OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data

TECHNISCHE UNIVERSITÄT DARMSTADT

32nd British Machine Vision Conference 2021

Christoph Reich[‡], Tim Prangemeier, Özdemir Cetin and Heinz Koeppl[†]

Centre for Synthetic Biology, Department of Electrical Engineering and Information Technology, Department of Biology, Technische Universität Darmstadt

‡christoph.reich@bcs.tu-darmstadt.de
†heinz.koeppl@bcs.tu-darmstadt.de

Introduction 3D Medical Semantic Segmentation

3D CNNs for 3D segmentation

+ Accurate segmentation $-O(n^3)$ memory and comp. complexity + Fast inference

Introduction 3D Medical Semantic Segmentation

3D CNNs for 3D segmentation

+ Accurate segmentation $- O(n^3)$ memory and comp. complexity + Fast inference \pounds 3D CNNs do not scale well to high voxel resolutions

Introduction 3D Medical Semantic Segmentation

2D CNNs for 3D segmentation

 \sim Relatively accurate segmentation + Memory efficient \sim Relatively fast inference

Introduction 3D Medical Semantic Segmentation

2D CNNs for 3D segmentation

 \sim Relatively accurate segmentation + Memory efficient \sim Relatively fast inference \pounds 2D CNNs do not model 3D relations

Related Work Efficient 3D Segmentation Approaches

Efficient 3D CNNs (voxelised)

- RevNet [Gomez et al., NeurIPS 2017]
- Other Representations (Mesh & Point Cloud)
 - PointNet++ [Qi et al., NeurIPS 2017]

Sparse convolutions [Choy et al., CVPR 2019]

Mesh R-CNN [Gkioxari et al., CVPR 2019]

Related Work Efficient 3D Segmentation Approaches

BMVC 2021 TECHNISCH UNIVERSITÄ

Efficient 3D CNNs (voxelised)

- RevNet [Gomez et al., NeurIPS 2017]
- Other Representations (Mesh & Point Cloud)
 - PointNet++ [Qi et al., NeurIPS 2017]

Sparse convolutions [Choy et al., CVPR 2019]

- Mesh R-CNN [Gkioxari et al., CVPR 2019]
- It Not applicable to dense medical data, require heavy post-processing, or sacrifice high memory efficiency.

Related Work Occupancy Networks (O-Nets)

Occupancy Networks [Mescheder <i>et al</i> ., CVPR 2019]						
	$f_ heta: \mathbb{R}^3 imes \mathcal{X} o [0,1]$					
+ Highly memory efficient	\sim Relatively slow inference	 Fail to express fine details 				

Method

Occupancy Networks for Semantic Segmentation (OSS-Net)

$$f_{\theta}: \mathbb{R}^3 \times \mathcal{X} \times \mathcal{Z} \rightarrow [0, 1]$$

 $x \in \mathcal{X}$: downscaled global volume

 $z \in \mathcal{Z}$: local 3D patches centered at the coordinate $p \in \mathbb{R}^3$

Method

Occupancy Networks for Semantic Segmentation (OSS-Net)

 $f_{\theta}: \mathbb{R}^3 imes \mathcal{X} imes \mathcal{Z} o [0, 1]$

 $x \in \mathcal{X}$: downscaled global volume $z \in \mathbb{Z}$: local 3D patches centered at the coordinate $p \in \mathbb{R}^3$

Improved inference (2× speed up) by utilising low-resolution encoder prediction (in green).

Results Segmentation

	BraTS 2020		Liī	ſS
Model/OSS-Net Configuration	Dice ↑	loU ↑	Dice ↑	loU ↑
3D residual U-Net (voxelised baseline)	0.8827	0.7995	0.7888	0.6558
2D residual U-Net (slicing baseline)	0.8589	0.7658	0.6674	0.5233
O-Net (function space baseline) [Mescheder et al., CVPR 2019]	0.7016	0.5615	0.6506	0.4842
+ patch encoder w/ small patches 7 ³ (OSS-Net A)	0.8592	0.7644	0.7127	0.5579
+ avg. pooled intermediate patches 14 ³ (OSS-Net B)	0.8541	0.7572	0.7585	0.6154
A + encoder skip-con. & aux. loss (OSS-Net C)	0.8842	0.7991	0.7616	0.6201
B + encoder skip-con. & aux. loss (OSS-Net D)	0.8774	0.7876	0.7566	0.6150

OSS-Nets achieve accurate segmentation results similar to 3D CNNs.

Results Segmentation

	BraTS 2020		Liī	ſS
Model/OSS-Net Configuration	Dice ↑	loU ↑	Dice ↑	loU ↑
3D residual U-Net (voxelised baseline)	0.8827	0.7995	0.7888	0.6558
2D residual U-Net (slicing baseline)	0.8589	0.7658	0.6674	0.5233
O-Net (function space baseline) [Mescheder et al., CVPR 2019]	0.7016	0.5615	0.6506	0.4842
+ patch encoder w/ small patches 7 ³ (OSS-Net A)	0.8592	0.7644	0.7127	0.5579
+ avg. pooled intermediate patches 14 ³ (OSS-Net B)	0.8541	0.7572	0.7585	0.6154
A + encoder skip-con. & aux. loss (OSS-Net C)	0.8842	0.7991	0.7616	0.6201
B + encoder skip-con. & aux. loss (OSS-Net D)	0.8774	0.7876	0.7566	0.6150

OSS-Nets achieve accurate segmentation results similar to 3D CNNs.

Results Segmentation

	BraTS 2020		LiT	S
Model/OSS-Net Configuration	Dice ↑	loU ↑	Dice ↑	loU ↑
3D residual U-Net (voxelised baseline)	0.8827	0.7995	0.7888	0.6558
2D residual U-Net (slicing baseline)	0.8589	0.7658	0.6674	0.5233
O-Net (function space baseline) [Mescheder et al., CVPR 2019]	0.7016	0.5615	0.6506	0.4842
+ patch encoder w/ small patches 7 ³ (OSS-Net A)	0.8592	0.7644	0.7127	0.5579
+ avg. pooled intermediate patches 14 ³ (OSS-Net B)	0.8541	0.7572	0.7585	0.6154
A + encoder skip-con. & aux. loss (OSS-Net C)	0.8842	0.7991	0.7616	0.6201
B + encoder skip-con. & aux. loss (OSS-Net D)	0.8774	0.7876	0.7566	0.6150

OSS-Nets achieve accurate segmentation results similar to 3D CNNs.

Memory

Model/	BraTS 2020			LiTS		
OSS-Net Configuration	Training 2 ¹⁴ loc.	Inference 2 ¹⁴ locations	Inference 2 ¹⁷ locations	Training 2 ¹⁴ loc.	Inference 2 ¹⁴ locations	Inference 2 ¹⁷ locations
3D res. U-Net	14.41GB	3.57GB (dense pred.)		14.41GB*	3.57GB (dense pred.) †	
2D res. U-Net	1.16GB‡	0.46GB (slice pred.) ‡		4.29GB [‡]	1.20GB (slice pred.) ‡	
O-Net	2.35GB	0.29GB	1.93GB	5.07GB	1.47GB	1.99GB
OSS-Net A	2.58GB	0.39GB	2.73GB	5.18GB	1.50GB	2.35GB
OSS-Net B	2.76GB	0.48GB	3.45GB	5.21GB	1.53GB	2.53GB
OSS-Net C	2.59GB	0.39GB	2.73GB	5.19GB	1.51GB	2.35GB
OSS-Net D	2.76GB	0.48GB	3.46GB	5.22GB	1.53GB	2.53GB

• OSS-Nets are highly memory efficient during training and inference.

Memory

Model/	BraTS 2020			LiTS			
OSS-Net Configuration	Training 2 ¹⁴ loc.	Inference 2 ¹⁴ locations	Inference 2 ¹⁷ locations	Training 2 ¹⁴ loc.	Inference 2 ¹⁴ locations	Inference 2 ¹⁷ locations	
3D res. U-Net	14.41GB	3.57GB (dense pred.)		14.41GB*	3.57GB (dense pred.) ^{\dagger}		
2D res. U-Net	1.16GB [‡]	0.46GB (slice pred.) [‡]		4.29GB [‡]	1.20GB (sli	ce pred.)‡	
O-Net	2.35GB	0.29GB	1.93GB	5.07GB	1.47GB	1.99GB	
OSS-Net A	2.58GB	0.39GB	2.73GB	5.18GB	1.50GB	2.35GB	
OSS-Net B	2.76GB	0.48GB	3.45GB	5.21GB	1.53GB	2.53GB	
OSS-Net C	2.59GB	0.39GB	2.73GB	5.19GB	1.51GB	2.35GB	
OSS-Net D	2.76GB	0.48GB	3.46GB	5.22GB	1.53GB	2.53GB	

• OSS-Nets are highly memory efficient during training and inference.

Memory

Model/	BraTS 2020			LiTS		
OSS-Net Configuration	Training 2 ¹⁴ loc.	Inference 2 ¹⁴ locations	Inference 2 ¹⁷ locations	Training 2 ¹⁴ loc.	Inference 2 ¹⁴ locations	Inference 2 ¹⁷ locations
3D res. U-Net	14.41GB	3.57GB (dense pred.)		14.41GB*	3.57GB (dense pred.) [†]	
2D res. U-Net	1.16GB‡	0.46GB (slice pred.) [‡]		4.29GB [‡]	1.20GB (sli	ce pred.)‡
O-Net	2.35GB	0.29GB	1.93GB	5.07GB	1.47GB	1.99GB
OSS-Net A	2.58GB	0.39GB	2.73GB	5.18GB	1.50GB	2.35GB
OSS-Net B	2.76GB	0.48GB	3.45GB	5.21GB	1.53GB	2.53GB
OSS-Net C	2.59GB	0.39GB	2.73GB	5.19GB	1.51GB	2.35GB
OSS-Net D	2.76GB	0.48GB	3.46 GB	5.22GB	1.53GB	2.53GB

• OSS-Nets are highly memory efficient during training and inference.

Conclusion

- We proposed OSS-Nets for segmenting 3D medical data in function space
 - + Accurate segmentation OSS-Nets achieve segmentation results similar to 3D CNNs
 - + Highly memory efficient OSS-Nets are highly memory efficient during inference and training
 - + Fast inference Improved inference approach yields a $2\times$ speed up

Project Page

Code & Trained Models

https://christophreich1996.
 github.io/oss_net/ C

https://github.com/ ChristophReich1996/OSS-Net

