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Introduction

Performance of Deep Vision Models on H.264-coded Videos

ti-dr:

» Standard image & video codecs are the de facto standard in real-world image & video processing pipelines » We evaluated the accuracy of deep vision models on H.264-coded video clips (w.r.t. the prediction on the original clip)

» The use of standard codecs facilitates low costs and interoperability » We evaluated 6 different vision models and two vision tasks

We examine the implications of employing

Standard codecs have been naively incorporated into deep vision pipelines

Semantic Segmentation Optical Flow Estimation
L . : L . . . . - . .. - - 100 30
. Rate-distortion has been studied through the lens of Shannon’s rate-distortion theory and via perceptual quality [1, 2] standardized codecs within dee D vision pi pe| ines. e 25|
+ We analyze the implications of standard codecs on the performance of deep vision models across downstream tasks 2 60 — 20
=y | A 15
) al
° e @) 40 i e L] 7
JPEG COdlng H0264 COdlng E 20 7 gesﬁtt—?giackbone < 12 f Egrzz s
° ° . . . . . . . . . | ResNet-50 backbone f Small
Performance of Deep Vision Models on JPEG-coded |mages Image classification Object detection Semantic segmentation = Optical flow estimation g |Reset0Tbackbone = \ \ \ | \ \ SMURF (large) =
B o O T ™ W e 5 | ‘ S s el 0 10 20 30 40 o 0 10 20 30 40 o1
No coding | No coding Coded f#F No coding Coded o o
» We evaluated the accuracy of deep vision models on JPEG-coded images (w.r.t. the prediction on the original images) ' 5 L L B e Raeaae . . N - ] H.264 quantization parameter (QP) H.264 quantization parameter (QP)

»+ We evaluated 20 different vision models and three vision tasks (from classification to dense prediction) - All deep vision models tested significantly suffer from H.264 coding

Semantic Segmentation Object Detection Image Classification » Surprisingly, larger models do not introduce more robustness (different from JPEG coding)
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already IeadS tO a Slgnlﬁ Ca nt IOSS Of perfOrmance. « Strong H.264 coding leads to a complete breakdown in optical flow estimation
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