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tl;dr:

We examine the implications of employing
standardized codecs within deep vision pipelines.
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Using standard coding significantly deteriorates
the accuracy across vision tasks and models.
For dense prediction tasks, moderate coding
already leads to a significant loss of performance.

Introduction
• Standard image & video codecs are the de facto standard in real-world image & video processing pipelines

• The use of standard codecs facilitates low costs and interoperability

• Standard codecs have been naïvely incorporated into deep vision pipelines

• Rate-distortion has been studied through the lens of Shannon’s rate-distortion theory and via perceptual quality [1, 2]

• We analyze the implications of standard codecs on the performance of deep vision models across downstream tasks

Performance of Deep Vision Models on JPEG-coded Images
• We evaluated the accuracy of deep vision models on JPEG-coded images (w.r.t. the prediction on the original images)

• We evaluated 20 different vision models and three vision tasks (from classification to dense prediction)
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Image Classification
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• All deep vision models tested significantly suffer from JPEG coding

• Dense prediction tasks suffer more from JPEG coding than image classification

• Larger capacity models offer more robustness against JPEG coding
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• Weak compression rates can lead to wrong predictions – strong coding leads to a collapse in segmentation accuracy

Performance of Deep Vision Models on H.264-coded Videos
• We evaluated the accuracy of deep vision models on H.264-coded video clips (w.r.t. the prediction on the original clip)

• We evaluated 6 different vision models and two vision tasks

0 10 20 30 40 51
0

20
40
60
80

100

H.264 quantization parameter (QP)

m
Io
U

(%
)↑

Semantic Segmentation
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Optical Flow Estimation
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• All deep vision models tested significantly suffer from H.264 coding

• Surprisingly, larger models do not introduce more robustness (different from JPEG coding)
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• Strong H.264 coding leads to a complete breakdown in optical flow estimation

Conclusion & Discussion
• All 23 models tested significantly suffered from standard coding

• For strong compression rates downstream deep vision performance can completely break down

How to overcome the deterioration in downstream deep vision performance?
• Optimizing standard codecs (see our other poster [3])

• Deep codecs for deep vision models (e.g., [4])

• Data augmentation (e.g., [5] & [3])

• Adapting deep vision models for coded data (e.g., [6])
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