Deep Video Codec Control for Vision Models

Christoph Reich^{1,2,3,4}, Biplob Debnath¹, Deep Patel¹, Tim Prangemeier³, Daniel Cremers^{2,4}, and Srimat Chakradhar¹ ¹NEC Laboratories America, Inc., ² TU Munich, ³ TU Darmstadt, ⁴ Munich Center for Machine Learning (MCML)

Introduction

- Standard lossy video codecs are part of almost all real-world video processing pipelines
- Standardization is key to ensuring interoperability & low costs in real-world applications
- Existing standard codecs are not optimized for current deep vision models
- We aim to optimize standard video codecs (e.g., H.264) for deep vision models

Tab. 1. High-level comparison of our Deep Video Codec Control with existing approaches.

	Optimize vision performance	Rate control	ISO
Deep video codecs		\sim	×
Standard video codecs (e.g., H.264 [1])	×		
Deep video codec control			

Problem Formulation

Goal: Optimize deep vision performance for a given rate w/o breaking standardization

- Learn control network C_{θ} to predict macroblock-wise quantization parameters QP
- Stay within the available bandwidth budget (rate control)
- Maximize downstream performance of a deep vision model DNN (e.g., DeepLabV3)

$$\max_{QP} M(DNN(H.264(\mathbf{V}, \mathbf{C}_{\theta}(\mathbf{V}, b))))$$
s.t. $\tilde{b} \leq b$. (1)

• Control problem can be formulated as a constrained optimization problem (cf. Eq. (1))

Motivation

How can we learn our Deep Video Codec Control such that performance (Eq. (1)) is maximized?

- Video encoding-decoding is not differentiable
- Finished Reinforcement learning does not scale to large action spaces (high-dimensional QP)
- Learning on a proxy task is suboptimal [3]
- Learn a differentiable surrogate model of the video codec
- Learn control by using end-to-end learning, optimizing Lagrange function of Eq. (1)

tl;dr:

Standard codecs are not optimized for current deep vision models. We present the first end-to-end learnable Deep Video Codec Control

Deep Video Codec Control

We train our Deep Video Codec Control end-to-end using a downstream model and our differentiable codec surrogate.

Fig. 1 The control network predicts high-dimensional codec parameters for an input clip and a given dynamic bandwidth condition.

- We use a loss between the downstream prediction on the coded and the original video to maximize vision performance
- For rate control, we penalize the control network using a bandwidth loss
- We regularize the control network to generate a bandwidth close to the target bandwidth

References

- [1] T. Wiegand et al., "Overview of the H.264/AVC video coding standard," IEEE Trans. Circ. Syst. Video Tech., vol. 13, no. 7, pp. 560–576, 2003.
- [2] W. Grathwohl et al., "Backpropagation through the void: Optimizing control variates for black-box gradient estimation," in ICLR, 2018.
- [3] K. Du et al., "AccMPEG: Optimizing video encoding for accurate video analytics," in MLSys, vol. 4, 2022, pp. 450–466.
- [4] Y.-H. Chen et al., "TransTIC: Transferring transformer-based image compression from human perception to machine perception," in ICCV,
- [5] G. J. Sullivan et al., "Overview of the high efficiency video coding (HEVC) standard," IEEE Trans. Circ. Syst. Video Tech., vol. 22, no. 12, pp. 1649–1668, 2012.

to optimize standard codecs for vision models w/o breaking standardization.

Differentiable Codec Surrogate

We learn a differentiable H.264 surrogate predicting both the coded clip and generated file size/bandwidth.

- Fig. 2 Differentiable H.264 codec surrogate model.
- Control variates theory used for learning the surrogate [2]

Surrogate Results

Fig. 3 Qualitative surrogate model results.

- Our surrogate approximates H.264 coding well
- Relative file size error typically below 5%

TECHNISCHE UNIVERSITÄT DARMSTADT

Codec Control Results

We demonstrated the effectiveness of our Deep Video Codec Control on the tasks of semantic segmentation and optical flow estimation (see paper).

Tab. 2 Semantic segmentation validation results. BW (acc_{bw}) & segmentation accuracies (acc_{seg}) for difference BW tolerances reported. Metrics averaged over ten BW conditions.

	$\operatorname{acc}_{\operatorname{bw}}(\%)\uparrow$			$\operatorname{acc}_{\operatorname{seg}}(\%)\uparrow$				
Method	$\Delta 0\%$	$\Delta 2\%$	$\Delta 5\%$	$\Delta 0\%$	$\Delta 2\%$	$\Delta 5\%$		
Cityscapes								
2-pass ABR (H.264) Deep Video Codec Control	68.13 96.22	74.98 97.05	82.31 97.91	64.29 84.79	70.57 85.50	77.07 86.28		
CamVid								
2-pass ABR (H.264) Deep Video Codec Control	63.91 94.64	74.43 95.61	85.36 96.46	54.06 65.70	62.49 62.52	71.53 59.01		

Our Deep Codec Control consistently outperformed 2-pass ABR

We are able to preserve up to 20% in semantic segmentation accuracy

We also analyzed the control performance when transferred between vision tasks

Tab. 3 Transfer results of our codec control from optical flow estimation to semantic segmentation on Cityscapes. We also report results when directly trained on semantic segmentation.

	$\operatorname{acc}_{\operatorname{bw}}$ \uparrow			$\operatorname{acc}_{\operatorname{seg}} \uparrow$		
Training task	$\Delta 0\%$	$\Delta 2\%$	$\Delta 5\%$	$\Delta 0\%$	$\Delta 2\%$	$\Delta 5\%$
Optical flow estimation Semantic segmentation	97.79 96.22	98.31 97.05	98.90 97.91	75.03 84.79	75.37 85.50	75.76 86.28

Transferring between tasks leads to a drop in downstream performance

This demonstrates that out control learns a task-specific behavior

Conclusion

- We demonstrate that learning an end-to-end deep codec control is feasible
- Our Deep Video Codec Control outperforms traditional rate control modules

Future research questions:

- How to facilitate multiple downstream models and tasks [4]
- How to generalize our Deep Video Codec Control to other standard codecs (e.g., H.265 [5])

