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Introduction

ti-dr:

» Standard lossy video codecs are part of almost all real-world video processing pipelines
+ Standardization is key to ensuring interoperability & low costs in real-world applications o o e o
A "’ Standard codecs are not optimized for current deep vision models.

» Existing standard codecs are not optimized for current deep vision models

+ We aim to optimize standard video codecs (e.g., H.264) for deep vision models

We present the first end-to-end learnable Deep Video Codec Control
to optimize standard codecs for vision models w/o breaking standardization.

Tab. 1. High-level comparison of our Deep Video Codec Control with existing approaches.
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We train our Deep Video Codec Control end-to-end using a downstream model and our differentiable codec surrogate.

Problem Formulation
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+ For rate control, we penalize the control network using a bandwidth loss Fig. 2 Differentiable H.264 codec surrogate model.

» We regularize the control network to generate a bandwidth close to the target bandwidth

How can we learn our Deep Video Codec Control such that performance (Eq. (1)) is max-
imized?
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v/ Learn a differentiable surrogate model of the video codec Fig. 3 Qualitative surrogate model results.

» Our surrogate approximates H.264 coding well
» Relative file size error typically below 5%

%’ Learn control by using end-to-end learning, optimizing Lagrange function of Eq. (1)

We learn a differentiable H.264 surrogate predicting both

- Control variates theory used for learning the surrogate [2]

Surrogate Result

Codec Control Results

We demonstrated the effectiveness of our Deep Video Codec Control on the tasks of
semantic segmentation and optical flow estimation (see paper).

Tab. 2 Semantic segmentation validation results. BW (accy,,,) & segmentation accuracies (accsey)
for difference BW tolerances reported. Metrics averaged over ten BW conditions.

acChy (%) T ACCseq (%0) 1

Method A0% A2% A% A0% A2% AD%
Cityscapes
2-pass ABR (H.264) 68.13 7498  82.31 64.29 70.57 77.07
Deep Video Codec Control 96.22 97.05 97.91 84.79 85.50 86.28
CamVid
2-pass ABR (H.264) 63.91 7443  85.36 54.06 6249 71.53

Deep Video Codec Control 9464 95.61 96.46 65.70 62.52 59.01

%’ Our Deep Codec Control consistently outperformed 2-pass ABR

%’ We are able to preserve up to 20% in semantic segmentation accuracy

We also analyzed the control performance when transferred between vision tasks

Tab. 3 Transfer results of our codec control from optical flow estimation to semantic segmenta-
tion on Cityscapes. We also report results when directly trained on semantic segmentation.

dCChw T dCCseg T
Training task A0% A2% A% A0% A2% A%
Optical flow estimation 97.79 98.31 98.90 7/5.03 75.37 75.76
Semantic segmentation 96.22 9/7.05 9/.97 84./79 8550 86.28

 Transferring between tasks leads to a drop in downstream performance

%’ This demonstrates that out control learns a task-specific behavior

+ We demonstrate that learning an end-to-end deep codec control is feasible

* Our Deep Video Codec Control outperforms traditional rate control modules

Future research questions:

» How to facilitate multiple downstream models and tasks [4]

» How to generalize our Deep Video Codec Control to other standard codecs (e.g., H.265[5])
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