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tl;dr:

Standard codecs are not optimized for current deep vision models.
We present the first end-to-end learnable Deep Video Codec Control
to optimize standard codecs for visionmodels w/o breaking standardization.

Introduction
• Standard lossy video codecs are part of almost all real-world video processing pipelines

• Standardization is key to ensuring interoperability & low costs in real-world applications

• Existing standard codecs are not optimized for current deep vision models

• We aim to optimize standard video codecs (e.g., H.264) for deep vision models

Tab. 1. High-level comparison of our Deep Video Codec Control with existing approaches.

Optimize vision
performance Rate control ISO

Deep video codecs 3 ∼ 7
Standard video codecs (e.g., H.264 [1]) 7 3 3
Deep video codec control 3 3 3

Problem Formulation
Goal: Optimize deep vision performance for a given rate w/o breaking standardization

• Learn control network Cθ to predict macroblock-wise quantization parameters QP

• Stay within the available bandwidth budget (rate control)

• Maximize downstream performance of a deep vision model DNN (e.g., DeepLabV3)

max
QP

M(DNN(H.264(V,Cθ(V, b))))

s.t. b̃ ≤ b.
(1)

• Control problem can be formulated as a constrained optimization problem (cf. Eq. (1))

Deep Video Codec Control
We train our Deep Video Codec Control end-to-end using a downstream model and our differentiable codec surrogate.
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Fig. 1 The control network predicts high-dimensional codec parameters for an input clip and a given dynamic bandwidth condition.

• We use a loss between the downstream prediction on the coded and the original video to maximize vision performance

• For rate control, we penalize the control network using a bandwidth loss

• We regularize the control network to generate a bandwidth close to the target bandwidth

Differentiable Codec Surrogate
We learn a differentiableH.264 surrogate predicting both
the coded clip and generated file size/bandwidth.

Fig. 2 Differentiable H.264 codec surrogate model.

• Control variates theory used for learning the surrogate [2]Motivation
How can we learn our Deep Video Codec Control such that performance (Eq. (1)) is max-
imized?

E Video encoding-decoding is not differentiable

E Reinforcement learning does not scale to large action spaces (high-dimensional QP)

∼ Learning on a proxy task is suboptimal [3]

3 Learn a differentiable surrogate model of the video codec

Learn control by using end-to-end learning, optimizing Lagrange function of Eq. (1)
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Fig. 3 Qualitative surrogate model results.

• Our surrogate approximates H.264 coding well
• Relative file size error typically below 5%

Conclusion
• We demonstrate that learning an end-to-end deep codec control is feasible

• Our Deep Video Codec Control outperforms traditional rate control modules

Future research questions:

• How to facilitate multiple downstream models and tasks [4]

• How to generalize our DeepVideoCodecControl to other standard codecs (e.g., H.265 [5])

Codec Control Results
We demonstrated the effectiveness of our Deep Video Codec Control on the tasks of
semantic segmentation and optical flow estimation (see paper).

Tab. 2 Semantic segmentation validation results. BW (accbw) & segmentation accuracies (accseg)
for difference BW tolerances reported. Metrics averaged over ten BW conditions.

accbw (%) ↑ accseg (%) ↑
Method ∆0% ∆2% ∆5% ∆0% ∆2% ∆5%

Cityscapes
2-pass ABR (H.264) 68.13 74.98 82.31 64.29 70.57 77.07
Deep Video Codec Control 96.22 97.05 97.91 84.79 85.50 86.28

CamVid
2-pass ABR (H.264) 63.91 74.43 85.36 54.06 62.49 71.53
Deep Video Codec Control 94.64 95.61 96.46 65.70 62.52 59.01

Our Deep Codec Control consistently outperformed 2-pass ABR

We are able to preserve up to 20% in semantic segmentation accuracy

We also analyzed the control performance when transferred between vision tasks

Tab. 3 Transfer results of our codec control from optical flow estimation to semantic segmenta-
tion on Cityscapes. We also report results when directly trained on semantic segmentation.

accbw ↑ accseg ↑
Training task ∆0% ∆2% ∆5% ∆0% ∆2% ∆5%
Optical flow estimation 97.79 98.31 98.90 75.03 75.37 75.76
Semantic segmentation 96.22 97.05 97.91 84.79 85.50 86.28

• Transferring between tasks leads to a drop in downstream performance

This demonstrates that out control learns a task-specific behavior
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