

Standard Codecs for Deep Vision Models

Christoph Reich TU Munich, Computer Vision Group TU Darmstadt, Visual Inference Lab 1st Workshop on AI for Streaming at CVPR Seattle, USA, June 2024, 17th

A Perspective on Deep Vision Performance with Standard Image and Video Codecs

Christoph Reich^{1,2,3,5} Oliver Hahn¹ Daniel Cremers² Stefan Roth^{1,4} Biplob Debnath³

Deep Video Codec Control for Vision Models

A Perspective on Deep Vision Performance with Standard Image and Video Codecs

Christoph Reich^{1,2,3,5} Oliver Hahn¹ Daniel Cremers² Stefan Roth^{1,4} Biplob Debnath³

Deep Video Codec Control for Vision Models

TECHNISCHE UNIVERSITÄT DARMSTADT

Motivation

• Standard image/video codecs (& rate control) used to compensate for bandwidth and storage constrains

Motivation

- Standard image/video codecs (& rate control) used to compensate for bandwidth and storage constrains
- Standardization required to ensure interoperability and low costs

• Standard codecs been studied using Shannon's rate-distortion theory [1] and via perceptual quality [2]

[1] C. E. Shannon, "Communication in the Presence of Noise," *Proceedings of the IRE*, 1949.
[2] Y. Blau *et al.*, "Rethinking lossy compression: The rate-distortion-perception tradeoff," in *ICML*, 2019.
Christoph Reich | 1st Workshop on Al for Streaming @ CVPR

• Standard codecs been studied using Shannon's rate-distortion theory [1] and via perceptual quality [2]

A significant and increasing amount of images and videos are analyzed by deep vision models

[1] C. E. Shannon, "Communication in the Presence of Noise," *Proceedings of the IRE*, 1949.
[2] Y. Blau *et al.*, "Rethinking lossy compression: The rate-distortion-perception tradeoff," in *ICML*, 2019.
Christoph Reich | 1st Workshop on Al for Streaming @ CVPR

• Standard codecs been studied using Shannon's rate-distortion theory [1] and via perceptual quality [2]

A significant and increasing amount of images and videos are analyzed by deep vision models

We examine the implications of using standard codecs within deep vision pipelines.

[1] C. E. Shannon, "Communication in the Presence of Noise," *Proceedings of the IRE*, 1949.

[2] Y. Blau et al., "Rethinking lossy compression: The rate-distortion-perception tradeoff," in ICML, 2019.

TECHNISCHE UNIVERSITÄT DARMSTADT

Experiments

• 23 deep vision models evaluated on coded images/videos

TECHNISCHE UNIVERSITÄT

DARMSTADT

Experiments

- 23 deep vision models evaluated on coded images/videos
- JPEG and H.264 coding utilized

- 23 deep vision models evaluated on coded images/videos
- JPEG and H.264 coding utilized
- Report results on a wide range of different computer vision tasks
- Image classification Object detection Semantic segmentation Optical flow estimation

- 23 deep vision models evaluated on coded images/videos
- JPEG and H.264 coding utilized
- Report results on a wide range of different computer vision tasks
 - Image classification Object detection Semantic segmentation Optical flow estimation

Evaluation approach

We measure the **relative vision performance** between the prediction obtained on the coded image/video and the prediction based on the original image/video (pseudo-label).

```
mloU(DeepLabV3(I<sub>coded</sub>), DeepLabV3(I<sub>original</sub>))
```


- 23 deep vision models evaluated on coded images/videos
- JPEG and H.264 coding utilized
- Report results on a wide range of different computer vision tasks
 - Image classification Object detection Semantic segmentation Optical flow estimation

Evaluation approach

We measure the **relative vision performance** between the prediction obtained on the coded image/video and the prediction based on the original image/video (pseudo-label).

```
mIoU(DeepLabV3(I<sub>coded</sub>), DeepLabV3(I<sub>original</sub>))
```

· Measures the effect of coding isolated from other factors

- 23 deep vision models evaluated on coded images/videos
- JPEG and H.264 coding utilized
- Report results on a wide range of different computer vision tasks
 - Image classification Object detection Semantic segmentation Optical flow estimation

Evaluation approach

We measure the **relative vision performance** between the prediction obtained on the coded image/video and the prediction based on the original image/video (pseudo-label).

```
mIoU(DeepLabV3(I<sub>coded</sub>), DeepLabV3(I<sub>original</sub>))
```

- · Measures the effect of coding isolated from other factors
- Interpretable and comparable results between models

- 23 deep vision models evaluated on coded images/videos
- JPEG and H.264 coding utilized
- Report results on a wide range of different computer vision tasks
 - Image classification Object detection Semantic segmentation Optical flow estimation

Evaluation approach

We measure the **relative vision performance** between the prediction obtained on the coded image/video and the prediction based on the original image/video (pseudo-label).

```
mIoU(DeepLabV3(I<sub>coded</sub>), DeepLabV3(I<sub>original</sub>))
```

- · Measures the effect of coding isolated from other factors
- Interpretable and comparable results between models
- Paper presents also results w.r.t. ground truth labels

Accuracy of deep vision models vastly deteriorates for small JPEG qualities.

Accuracy of deep vision models vastly deteriorates for small JPEG qualities.

• Dense prediction tasks are more sensitive to JPEG coding than image classification

Accuracy of deep vision models vastly deteriorates for small JPEG qualities.

- Dense prediction tasks are more sensitive to JPEG coding than image classification
- Larger capacity models offer better robustness against JPEG coding

Weak compression rates can lead to wrong predictions

Weak compression rates can lead to wrong predictions – strong coding leads to a collapse in segmentation accuracy.

Results on H.264-Coded Videos

Results on H.264-Coded Videos

Computer Vision Group

Accuracy of deep vision models vastly deteriorates for strong H.264 quantization.

Results on H.264-Coded Videos

Accuracy of deep vision models vastly deteriorates for strong H.264 quantization.

• Surprisingly, larger capacity models do not necessarily lead to more robustness against H.264 coding

f Standard image and video coding significantly effects the accuracy of current deep vision models

f Standard image and video coding significantly effects the accuracy of current deep vision models

If The accuracy of all 23 tested vision models deteriorated with standard coding

f Standard image and video coding significantly effects the accuracy of current deep vision models

- If The accuracy of all 23 tested vision models deteriorated with standard coding
- Strong compression rates can lead to a complete collapse in accuracy

f Standard image and video coding significantly effects the accuracy of current deep vision models

- It he accuracy of all 23 tested vision models deteriorated with standard coding
- Strong compression rates can lead to a complete collapse in accuracy

A Perspective on Deep Vision Performance with Standard Image and Video Codecs

¹TU Darmstadt ²TU Munich ³NEC Laboratories America, Inc. ⁴hesssian.AI ⁵Munich Center for Machine Learning

How can we optimize standard video codecs for deep vision models?

How can we optimize standard video codecs for deep vision models?

More specifically, we want to consider the following conditions:

- Optimize downstream deep vision performance on coded videos
- ✓ Adapt to different bandwidth or storage constrains (rate control)
- ✓ Adhere to existing standards

Related Work

	Optimize vision performance	Rate control	ISO
Deep video codecs[3]	 Image: A start of the start of	\sim	X
Standard video codecs (e.g., H.264[4])	×	\checkmark	\checkmark
Deep Video Codec Control	\checkmark	\checkmark	\checkmark

[3] Y. Zhang *et al.*, "A survey on perceptually optimized video coding," *ACM Comput. Surv.*, vol. 55, no. 12, pp. 1–37, 2023.
[4] T. Wiegand *et al.*, "Overview of the H.264/AVC video coding standard," *IEEE Trans. Circ. Syst. Video Tech.*, vol. 13, no. 7, pp. 560–576, 2003.
Christoph Reich | 1st Workshop on AI for Streaming @ CVPR

TECHNISCHE UNIVERSITÄT DARMSTADT

Method

TECHNISCHE UNIVERSITÄT

DARMSTADT

Method

• Predict high-dimensional codec parameters s.t. vision performance is maximized

Method

• Predict high-dimensional codec parameters s.t. vision performance is maximized

Method

- Predict high-dimensional codec parameters s.t. vision performance is maximized
- Encoded video bit-rate should not exceed bandwidth condition

Method

- Predict high-dimensional codec parameters s.t. vision performance is maximized
- · Encoded video bit-rate should not exceed bandwidth condition
- Learn the control network in a fully end-to-end setting

Problem Formulation

M Downstream metric (*e.g.*, mIoU)

Christoph Reich | 1st Workshop on AI for Streaming @ CVPR

 $\max_{QP} M\big($

пп

TECHNISCHE UNIVERSITÄT DARMSTADT

Problem Formulation

M Downstream metric (*e.g.*, mIoU)

DNN Downstream deep vision model (*e.g.*, DETR)

TECHNISCHE UNIVERSITÄT

DARMSTADT

Problem Formulation

 $\max_{QP} M(DNN(H.264(V,))))$

- M Downstream metric (*e.g.*, mIoU)
- DNN Downstream deep vision model (*e.g.*, DETR)
- H.264 H.264 encoding-decoding mapping
- V Video clip to be coded of the shape $\mathbb{R}^{T \times H \times W}$

TECHNISCHE UNIVERSITÄT

DARMSTADT

 $\max_{\text{QP}} M(\text{DNN}(\text{H.264}(\mathbf{V}, C_{\theta}(\mathbf{V}, b))))$

- M Downstream metric (*e.g.*, mIoU)
- DNN Downstream deep vision model (*e.g.*, DETR)
- H.264 H.264 encoding-decoding mapping
- V Video clip to be coded of the shape $\mathbb{R}^{T \times H \times W}$
- C_{θ} Control network (predicts macroblock-wise quantization parameters $QP \in [0, 1, ..., 51]^{T \times H/16 \times W/16}$)

Problem Formulation

 $\max_{\text{QP}} M(\text{DNN}(\text{H.264}(\mathbf{V}, C_{\theta}(\mathbf{V}, b))))$ s.t. $\tilde{b} \leq b$.

- M Downstream metric (*e.g.*, mIoU)
- DNN Downstream deep vision model (*e.g.*, DETR)
- H.264 H.264 encoding-decoding mapping
- V Video clip to be coded of the shape $\mathbb{R}^{T \times H \times W}$
- C_{θ} Control network (predicts macroblock-wise quantization parameters $QP \in [0, 1, ..., 51]^{T \times H/16 \times W/16}$)
- *b* Target bandwidth
- *b* Actual induced bandwidth

 $\max_{\text{QP}} M(\text{DNN}(\text{H.264}(\mathbf{V}, C_{\theta}(\mathbf{V}, b))))$ s.t. $\tilde{b} \leq b$.

 $\max_{\text{QP}} M(\text{DNN}(\text{H.264}(\mathbf{V}, C_{\theta}(\mathbf{V}, b))))$ s.t. $\tilde{b} \leq b$.

H.264 encoding-decoding is non-differentiable

 $\max_{\text{QP}} M(\text{DNN}(\text{H.264}(\mathbf{V}, C_{\theta}(\mathbf{V}, b))))$ s.t. $\tilde{b} \leq b$.

- H.264 encoding-decoding is non-differentiable
- Actual induced bandwidth is also non-differentiable

 $\max_{\text{QP}} M(\text{DNN}(\text{H.264}(\mathbf{V}, C_{\theta}(\mathbf{V}, b))))$ s.t. $\tilde{b} \leq b$.

- H.264 encoding-decoding is non-differentiable
- Actual induced bandwidth is also non-differentiable
- Straight forward application of end-to-end learning not possible

Differentiable Codec Surrogate Model

· Learn a differentiable surrogate model to approximate non-differentiable mappings

[5] W. Grathwohl *et al.*, "Backpropagation through the void: Optimizing control variates for black-box gradient estimation," in *ICLR*, 2018. Christoph Reich | 1st Workshop on Al for Streaming @ CVPR

Differentiable Codec Surrogate Model

• Learn a differentiable surrogate model to approximate non-differentiable mappings

• We present a differentiable surrogate model predicting both the coded video and the file size (bandwidth)

[5] W. Grathwohl *et al.*, "Backpropagation through the void: Optimizing control variates for black-box gradient estimation," in *ICLR*, 2018. Christoph Reich | 1st Workshop on Al for Streaming @ CVPR

Differentiable Codec Surrogate Model

· Learn a differentiable surrogate model to approximate non-differentiable mappings

- We present a differentiable surrogate model predicting both the coded video and the file size (bandwidth)
- Control variates theory used for learning the surrogate [5]

[5] W. Grathwohl *et al.*, "Backpropagation through the void: Optimizing control variates for black-box gradient estimation," in *ICLR*, 2018. Christoph Reich | 1st Workshop on AI for Streaming @ CVPR

пп

TECHNISCHE UNIVERSITÄT DARMSTADT

TECHNISCHE UNIVERSITÄT

DARMSTADT

Our proposed surrogate approximates H.264 video distortion well

TECHNISCHE UNIVERSITÄT

DARMSTADT

- Our proposed surrogate approximates H.264 video distortion well
- Relative file size (bandwidth) error typically **below 5%**

Deep Video Codec Control Pipeline

Deep Video Codec Control Pipeline

• Learn control network end-to-end using the Lagrangian function of the constrained optimization problem

Deep Video Codec Control Pipeline

- Learn control network end-to-end using the Lagrangian function of the constrained optimization problem
- We regularize the control network to generate a bandwidth close to the target bandwidth

Codec Control Results

Table: Semantic segmentation validation results on Cityscapes using a DeepLabV3 model.

Method	Bandwidth accuracy (%) \uparrow	Segmentation accuracy (%) \uparrow
	Cityscapes	
2-pass ABR (H.264) Deep Video Codec Control	68.13 96.22	64.29 84.79
	CamVid	
2-pass ABR (H.264) Deep Video Codec Control	63.91 94.64	54.06 65.70

Codec Control Results

Table: Semantic segmentation validation results on Cityscapes using a DeepLabV3 model.

Method	Bandwidth accuracy (%) \uparrow	Segmentation accuracy (%) \uparrow
	Cityscapes	
2-pass ABR (H.264)	68.13	64.29
Deep Video Codec Control	96.22	84.79
	CamVid	
2-pass ABR (H.264)	63.91	54.06
Deep Video Codec Control	94.64	65.70

• Our Deep Codec Control consistently outperformed 2-pass ABR

Codec Control Results

Table: Semantic segmentation validation results on Cityscapes using a DeepLabV3 model.

Method	Bandwidth accuracy (%) \uparrow	Segmentation accuracy (%) \uparrow
	Cityscapes	
2-pass ABR (H.264)	68.13	64.29
Deep Video Codec Control	96.22	84.79
	CamVid	
2-pass ABR (H.264)	63.91	54.06
Deep Video Codec Control	94.64	65.70

- Our Deep Codec Control consistently outperformed 2-pass ABR
- We preserve up to 20% more semantic accuracy than 2-pass ABR

Downstream Task Transfer Result

Table: Transfer results of our Deep Video Codec Control from optical flow estimation \rightarrow semantic segmentation on Cityscapes.

Training task	Bandwidth accuracy (%) \uparrow	Segmentation accuracy (%) \uparrow
Optical flow estimation	97.79	75.03
framed off larger lask	90.22	04.79

Downstream Task Transfer Result

Table: Transfer results of our Deep Video Codec Control from optical flow estimation \rightarrow semantic segmentation on Cityscapes.

Training task	Bandwidth accuracy (%) \uparrow	Segmentation accuracy (%) \uparrow
Optical flow estimation	97.79	75.03
Trained on target task	96.22	84.79

f Transferring between downstream task during inference leads to a drop in vision performance

Downstream Task Transfer Result

Table: Transfer results of our Deep Video Codec Control from optical flow estimation \rightarrow semantic segmentation on Cityscapes.

Training task	Bandwidth accuracy (%) \uparrow	Segmentation accuracy (%) \uparrow
Optical flow estimation	97.79	75.03
Trained on target task	96.22	84.79

Transferring between downstream task during inference leads to a drop in vision performance

• Our end-to-end learned codec control learns a task-specific behavior

• We present the first end-to-end learnable codec control for a standard codec

- We present the first end-to-end learnable codec control for a standard codec
- Our Deep Video Codec Control adheres to existing standardizations, optimizes vision performance, and performs rate control

- We present the first end-to-end learnable codec control for a standard codec
- Our Deep Video Codec Control adheres to existing standardizations, optimizes vision performance, and performs rate control

Future research questions:

- How to support multiple downstream tasks with a single codec control?
- How to generalize our Deep Video Codec Control to other standard codecs (e.g., H.265)?

TECHNISCHE UNIVERSITÄT

DARMSTADT

A Perspective on Deep Vision Performance with Standard Image and Video Codecs

Questions?

References

- [1] C. E. Shannon, "Communication in the Presence of Noise," *Proceedings of the IRE*, 1949.
- [2] Y. Blau *et al.*, "Rethinking lossy compression: The rate-distortion-perception tradeoff," in *ICML*, 2019.
- [3] Y. Zhang *et al.*, "A survey on perceptually optimized video coding," *ACM Comput. Surv.*, vol. 55, no. 12, pp. 1–37, 2023.
- [4] T. Wiegand *et al.*, "Overview of the H.264/AVC video coding standard," *IEEE Trans. Circ. Syst. Video Tech.*, vol. 13, no. 7, pp. 560–576, 2003.
- [5] W. Grathwohl *et al.*, "Backpropagation through the void: Optimizing control variates for black-box gradient estimation," in *ICLR*, 2018.