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• Standard image/video codecs (& rate control) used to compensate for bandwidth and storage constrains
• Standardization required to ensure interoperability and low costs
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Introduction
• Standard codecs been studied using Shannon’s rate-distortion theory [1] and via perceptual quality [2]
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E A significant and increasing amount of images and videos are analyzed by deep vision models

We examine the implications of using standard codecs within deep vision pipelines.

[1] C. E. Shannon, “Communication in the Presence of Noise,” Proceedings of the IRE, 1949.
[2] Y. Blau et al., “Rethinking lossy compression: The rate-distortion-perception tradeoff,” in ICML, 2019.
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Experiments
• 23 deep vision models evaluated on coded images/videos

• JPEG and H.264 coding utilized
• Report results on a wide range of different computer vision tasks

− Image classification − Object detection − Semantic segmentation − Optical flow estimation

Evaluation approach

We measure the relative vision performance between the prediction obtained on the coded image/video and the
prediction based on the original image/video (pseudo-label).

mIoU
(
DeepLabV3(Icoded),DeepLabV3

(
Ioriginal

))
• Measures the effect of coding isolated from other factors
• Interpretable and comparable results between models
• Paper presents also results w.r.t. ground truth labels
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Results on JPEG-Coded Images I
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Accuracy of deep vision models vastly deteriorates for small JPEG qualities.

• Dense prediction tasks are more sensitive to JPEG coding than image classification
• Larger capacity models offer better robustness against JPEG coding
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• Dense prediction tasks are more sensitive to JPEG coding than image classification
• Larger capacity models offer better robustness against JPEG coding
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Results on JPEG-Coded Images II
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Weak compression rates can lead to wrong predictions – strong coding leads to a
collapse in segmentation accuracy.
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Results on H.264-Coded Videos
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Accuracy of deep vision models vastly deteriorates for strong H.264 quantization.

• Surprisingly, larger capacity models do not necessarily lead to more robustness against H.264 coding

Christoph Reich | 1st Workshop on AI for Streaming @ CVPR 7

Computer Vision Group



Results on H.264-Coded Videos

0 10 20 30 40 51
0

20

40

60

80

100

H.264 quantization parameter (QP)

m
Io

U
(%

)↑
Semantic Segmentation

0 10 20 30 40 51
0

5

10

15

20

25

30

H.264 quantization parameter (QP)

E
P

E
↓

Optical Flow Estimation

DeepLabV3
ResNet-18
ResNet-50
ResNet-101

RAFT
Large
Small
SMURF (large)

0 10 20 30 40 51
0

20

40

60

80

100

H.264 quantization parameter (QP)

m
Io

U
(%

)↑

Semantic Segmentation

0 10 20 30 40 51
0

5

10

15

20

25

30

H.264 quantization parameter (QP)

E
P

E
↓

Optical Flow Estimation

DeepLabV3
ResNet-18
ResNet-50
ResNet-101

RAFT
Large
Small
SMURF (large)

Accuracy of deep vision models vastly deteriorates for strong H.264 quantization.

• Surprisingly, larger capacity models do not necessarily lead to more robustness against H.264 coding

Christoph Reich | 1st Workshop on AI for Streaming @ CVPR 7

Computer Vision Group



Results on H.264-Coded Videos

0 10 20 30 40 51
0

20

40

60

80

100

H.264 quantization parameter (QP)

m
Io

U
(%

)↑
Semantic Segmentation

0 10 20 30 40 51
0

5

10

15

20

25

30

H.264 quantization parameter (QP)

E
P

E
↓

Optical Flow Estimation

DeepLabV3
ResNet-18
ResNet-50
ResNet-101

RAFT
Large
Small
SMURF (large)

0 10 20 30 40 51
0

20

40

60

80

100

H.264 quantization parameter (QP)

m
Io

U
(%

)↑

Semantic Segmentation

0 10 20 30 40 51
0

5

10

15

20

25

30

H.264 quantization parameter (QP)

E
P

E
↓

Optical Flow Estimation

DeepLabV3
ResNet-18
ResNet-50
ResNet-101

RAFT
Large
Small
SMURF (large)

Accuracy of deep vision models vastly deteriorates for strong H.264 quantization.

• Surprisingly, larger capacity models do not necessarily lead to more robustness against H.264 coding

Christoph Reich | 1st Workshop on AI for Streaming @ CVPR 7

Computer Vision Group



Conclusion
E Standard image and video coding significantly effects the accuracy of current deep vision models

E The accuracy of all 23 tested vision models deteriorated with standard coding

E Strong compression rates can lead to a complete collapse in accuracy
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Introduction

How can we optimize standard video codecs for deep vision models?

More specifically, we want to consider the following conditions:

✓ Optimize downstream deep vision performance on coded videos

✓ Adapt to different bandwidth or storage constrains (rate control)

✓ Adhere to existing standards
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Related Work

Optimize vision
performance

Rate
control ISO

Deep video codecs[3] ✓ ∼ ✗

Standard video codecs (e.g., H.264[4]) ✗ ✓ ✓

Deep Video Codec Control ✓ ✓ ✓

[3] Y. Zhang et al., “A survey on perceptually optimized video coding,” ACM Comput. Surv., vol. 55, no. 12, pp. 1–37, 2023.
[4] T. Wiegand et al., “Overview of the H.264/AVC video coding standard,” IEEE Trans. Circ. Syst. Video Tech., vol. 13, no. 7, pp. 560–576, 2003.
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dṼ
dqp , d̃f

dqp

Clip & BW cond.

100kbit/s

Codec control network

Edge device-side

co
de

c
pa

ra
m

.

Encode

Video codec

Decode

Deep vision model^

P
re

di
ct

io
n

Server-side

• Predict high-dimensional codec parameters s.t. vision performance is maximized
• Encoded video bit-rate should not exceed bandwidth condition
• Learn the control network in a fully end-to-end setting
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Problem Formulation

max
QP

M( )

s.t. b̃ ≤ b.

M Downstream metric (e.g., mIoU)

DNN Downstream deep vision model (e.g., DETR)
H.264 H.264 encoding-decoding mapping
V Video clip to be coded of the shape RT×H×W

Cθ Control network (predicts macroblock-wise quantization parameters QP ∈ [0,1, . . . ,51]T×H/16×W/16)
b Target bandwidth
b̃ Actual induced bandwidth
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Problem with End-To-End Learning

max
QP

M(DNN(H.264(V,Cθ (V,b))))

s.t. b̃ ≤ b.

E H.264 encoding-decoding is non-differentiable

E Actual induced bandwidth is also non-differentiable

E Straight forward application of end-to-end learning not possible
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Differentiable Codec Surrogate Model
• Learn a differentiable surrogate model to approximate non-differentiable mappings

• We present a differentiable surrogate model predicting both the coded video and the file size (bandwidth)
• Control variates theory used for learning the surrogate [5]

[5] W. Grathwohl et al., “Backpropagation through the void: Optimizing control variates for black-box gradient estimation,” in ICLR, 2018.
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Surrogate Results
H.264 Our surrogate model QP map
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• Our proposed surrogate approximates H.264 video distortion well
• Relative file size (bandwidth) error typically below 5%
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Deep Video Codec Control Pipeline

dṼ
dqp , d̃f

dqp

Clip & BW cond.

100kbit/s

Codec control network

Edge device-side

co
de

c
pa

ra
m

.

Encode

Video codec

Decode

Deep vision model^

P
re

di
ct

io
n

Server-side

• Learn control network end-to-end using the Lagrangian function of the constrained optimization problem
• We regularize the control network to generate a bandwidth close to the target bandwidth
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Codec Control Results

Table: Semantic segmentation validation results on Cityscapes using a DeepLabV3 model.

Method Bandwidth accuracy (%) ↑ Segmentation accuracy (%) ↑
Cityscapes

2-pass ABR (H.264) 68.13 64.29
Deep Video Codec Control 96.22 84.79

CamVid
2-pass ABR (H.264) 63.91 54.06
Deep Video Codec Control 94.64 65.70

• Our Deep Codec Control consistently outperformed 2-pass ABR
• We preserve up to 20% more semantic accuracy than 2-pass ABR
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Downstream Task Transfer Result

Table: Transfer results of our Deep Video Codec Control from optical flow estimation → semantic segmentation on Cityscapes.

Training task Bandwidth accuracy (%) ↑ Segmentation accuracy (%) ↑
Optical flow estimation 97.79 75.03
Trained on target task 96.22 84.79

E Transferring between downstream task during inference leads to a drop in vision performance
• Our end-to-end learned codec control learns a task-specific behavior
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Conclusion

• We present the first end-to-end learnable codec control for a standard codec

• Our Deep Video Codec Control adheres to existing standardizations, optimizes vision performance, and
performs rate control

Future research questions:

• How to support multiple downstream tasks with a single codec control?
• How to generalize our Deep Video Codec Control to other standard codecs (e.g., H.265)?
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A Perspective on Deep Vision Performance
with Standard Image and Video Codecs

Deep Video Codec Control for Vision Models

Questions?
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https://arxiv.org/abs/2404.12330
https://arxiv.org/abs/2308.16215
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