

Standard Codecs for Deep Vision Models

[Christoph Reich](https://christophreich1996.github.io) TU Munich, [Computer Vision Group](https://cvg.cit.tum.de) TU Darmstadt, [Visual Inference Lab](https://www.visinf.tu-darmstadt.de/visual_inference/index.en.jsp) [1st Workshop on AI for Streaming at CVPR](https://ai4streaming-workshop.github.io) Seattle, USA, June 2024, 17th

[A Perspective on Deep Vision Performance with Standard Image and Video Codecs](https://arxiv.org/abs/2404.12330)

[Deep Video Codec Control for Vision Models](https://arxiv.org/abs/2308.16215)

[A Perspective on Deep Vision Performance with Standard Image and Video Codecs](https://arxiv.org/abs/2404.12330)

[Christoph Reich](https://christophreich1996.github.io)^{1,2,3,5} [Oliver Hahn](https://olvrhhn.github.io)¹ Daniel Cremers² Stefan Roth^{1,4} Biplob Debnath³

[Deep Video Codec Control for Vision Models](https://arxiv.org/abs/2308.16215)

[Christoph Reich](https://christophreich1996.github.io)^{1,2,3,5} Biplob Debnath³ Deep Patel³ Tim Prangemeier¹ Daniel Cremers² Srimat Chakradhar³

ПT

TECHNISCHE
UNIVERSITÄT
DARMSTADT

Motivation

• Standard image/video codecs (& rate control) used to compensate for **bandwidth** and **storage constrains**

Motivation

- Standard image/video codecs (& rate control) used to compensate for **bandwidth** and **storage constrains**
- Standardization required to ensure **interoperability** and **low costs**

TECHNISCHE
UNIVERSITAT **DARMSTADT**

Introduction

• Standard codecs been studied using Shannon's **rate-distortion theory**[1] and via **perceptual quality**[2]

[1] C. E. Shannon, "Communication in the Presence of Noise," *Proceedings of the IRE*, 1949. [2] Y. Blau *et al.*, "Rethinking lossy compression: The rate-distortion-perception tradeoff," in *ICML*, 2019. Christoph Reich | 1st Workshop on AI for Streaming @ CVPR 3

TECHNISCHE UNIVERSITAT **DARMSTADT**

Introduction

• Standard codecs been studied using Shannon's **rate-distortion theory**[1] and via **perceptual quality**[2]

E **A significant and increasing amount of images and videos are analyzed by deep vision models**

[1] C. E. Shannon, "Communication in the Presence of Noise," *Proceedings of the IRE*, 1949. [2] Y. Blau *et al.*, "Rethinking lossy compression: The rate-distortion-perception tradeoff," in *ICML*, 2019. Christoph Reich | 1st Workshop on AI for Streaming @ CVPR 3

TECHNISCHE UNIVERSITAT **DARMSTADT**

Introduction

• Standard codecs been studied using Shannon's **rate-distortion theory**[1] and via **perceptual quality**[2]

E **A significant and increasing amount of images and videos are analyzed by deep vision models**

We examine the implications of using standard codecs within deep vision pipelines.

[1] C. E. Shannon, "Communication in the Presence of Noise," *Proceedings of the IRE*, 1949.

[2] Y. Blau *et al.*, "Rethinking lossy compression: The rate-distortion-perception tradeoff," in *ICML*, 2019.

• **23 deep vision models** evaluated on coded images/videos

TECHNISCHE
UNIVERSITÄT **DARMSTADT**

Experiments

- **23 deep vision models** evaluated on coded images/videos
- **JPEG** and **H.264** coding utilized

- **23 deep vision models** evaluated on coded images/videos
- **JPEG** and **H.264** coding utilized
- Report results on a **wide range of different computer vision tasks**
- − Image classification − Object detection − Semantic segmentation − Optical flow estimation

- **23 deep vision models** evaluated on coded images/videos
- **JPEG** and **H.264** coding utilized
- Report results on a **wide range of different computer vision tasks**
- − Image classification − Object detection − Semantic segmentation − Optical flow estimation

Evaluation approach

We measure the **relative vision performance** between the prediction obtained on the coded image/video and the prediction based on the original image/video (pseudo-label).

```
\textsf{mIoU} \big( \textsf{DeepLabV3} (\textsf{I}_{\textsf{coded}}), \textsf{DeepLabV3} (\textsf{I}_{\textsf{original}}) \big)
```


- **23 deep vision models** evaluated on coded images/videos
- **JPEG** and **H.264** coding utilized
- Report results on a **wide range of different computer vision tasks**
	- − Image classification − Object detection − Semantic segmentation − Optical flow estimation

Evaluation approach

We measure the **relative vision performance** between the prediction obtained on the coded image/video and the prediction based on the original image/video (pseudo-label).

```
\textsf{mIoU} \big( \textsf{DeepLabV3} (\textsf{I}_{\textsf{coded}}), \textsf{DeepLabV3} (\textsf{I}_{\textsf{original}}) \big)
```
• **Measures the effect of coding isolated from other factors**

- **23 deep vision models** evaluated on coded images/videos
- **JPEG** and **H.264** coding utilized
- Report results on a **wide range of different computer vision tasks**
	- − Image classification − Object detection − Semantic segmentation − Optical flow estimation

Evaluation approach

We measure the **relative vision performance** between the prediction obtained on the coded image/video and the prediction based on the original image/video (pseudo-label).

```
\textsf{mIoU} \big( \textsf{DeepLabV3} (\textsf{I}_{\textsf{coded}}), \textsf{DeepLabV3} (\textsf{I}_{\textsf{original}}) \big)
```
- **Measures the effect of coding isolated from other factors**
- Interpretable and comparable results between models

- **23 deep vision models** evaluated on coded images/videos
- **JPEG** and **H.264** coding utilized
- Report results on a **wide range of different computer vision tasks**
	- − Image classification − Object detection − Semantic segmentation − Optical flow estimation

Evaluation approach

We measure the **relative vision performance** between the prediction obtained on the coded image/video and the prediction based on the original image/video (pseudo-label).

```
\textsf{mIoU} \big( \textsf{DeepLabV3} (\textsf{I}_{\textsf{coded}}), \textsf{DeepLabV3} (\textsf{I}_{\textsf{original}}) \big)
```
- **Measures the effect of coding isolated from other factors**
- Interpretable and comparable results between models
- Paper presents also results w.r.t. ground truth labels

Accuracy of deep vision models vastly deteriorates for small JPEG qualities.

Accuracy of deep vision models vastly deteriorates for small JPEG qualities.

• Dense prediction tasks are more sensitive to JPEG coding than image classification

Accuracy of deep vision models vastly deteriorates for small JPEG qualities.

- Dense prediction tasks are more sensitive to JPEG coding than image classification
- Larger capacity models offer better robustness against JPEG coding

Weak compression rates can lead to wrong predictions

Weak compression rates can lead to wrong predictions – strong coding leads to a collapse in segmentation accuracy.

Results on H.264-Coded Videos

Results on H.264-Coded Videos

Accuracy of deep vision models vastly deteriorates for strong H.264 quantization.

Results on H.264-Coded Videos

Accuracy of deep vision models vastly deteriorates for strong H.264 quantization.

• Surprisingly, larger capacity models do not necessarily lead to more robustness against H.264 coding

E **Standard image and video coding significantly effects the accuracy of current deep vision models**

E **Standard image and video coding significantly effects the accuracy of current deep vision models**

 ℓ The accuracy of all 23 tested vision models deteriorated with standard coding

E **Standard image and video coding significantly effects the accuracy of current deep vision models**

- ℓ The accuracy of all 23 tested vision models deteriorated with standard coding
- ℓ Strong compression rates can lead to a complete collapse in accuracy

E **Standard image and video coding significantly effects the accuracy of current deep vision models**

- ℓ The accuracy of all 23 tested vision models deteriorated with standard coding
- ℓ Strong compression rates can lead to a complete collapse in accuracy

[A Perspective on Deep Vision Performance with Standard Image and Video Codecs](https://arxiv.org/abs/2404.12330)

Christoph Reich^{1,2,3,5} Oliver Hahn¹ Daniel Cremers² Stefan Roth^{1,4} Biplob Debnath³

[Deep Video Codec Control for Vision Models](https://arxiv.org/abs/2308.16215)

Christoph Reich^{1,2,3,5} Biplob Debnath³ Deep Patel³ Tim Prangemeier¹ Daniel Cremers² Srimat Chakradhar³

¹TU Darmstadt ²TU Munich ³NEC Laboratories America, Inc. ⁴hesssian.AI ⁵Munich Center for Machine Learning

Introduction

How can we optimize standard video codecs for deep vision models?

Introduction

How can we optimize standard video codecs for deep vision models?

More specifically, we want to consider the following conditions:

- ✓ Optimize downstream deep vision performance on coded videos
- ✓ Adapt to different bandwidth or storage constrains (rate control)
- $\sqrt{\ }$ Adhere to existing standards

Related Work

[3] Y. Zhang *et al.*, "A survey on perceptually optimized video coding," *ACM Comput. Surv.*, vol. 55, no. 12, pp. 1–37, 2023. [4] T. Wiegand *et al.*, "Overview of the H.264/AVC video coding standard," *IEEE Trans. Circ. Syst. Video Tech.*, vol. 13, no. 7, pp. 560–576, 2003. Christoph Reich | 1st Workshop on AI for Streaming @ CVPR 11

TECHNISCHE
UNIVERSITÄT
DARMSTADT

Method

TECHNISCHE
UNIVERSITAT **DARMSTADT**

Method

• Predict **high-dimensional codec parameters** s.t. vision performance is maximized

Method

• Predict **high-dimensional codec parameters** s.t. vision performance is maximized

Method

- Predict **high-dimensional codec parameters** s.t. vision performance is maximized
- Encoded video bit-rate should not exceed bandwidth condition

Method

- Predict **high-dimensional codec parameters** s.t. vision performance is maximized
- Encoded video bit-rate should not exceed bandwidth condition
- Learn the control network in a **fully end-to-end setting**

Problem Formulation

M Downstream metric (*e.g.*, mIoU)

Christoph Reich | 1st Workshop on AI for Streaming @ CVPR 13

max QP

 $M($

Ш

TECHNISCHE
UNIVERSITAT
DARMSTADT

Problem Formulation

M Downstream metric (*e.g.*, mIoU)

DNN Downstream deep vision model (*e.g.*, DETR)

TECHNISCHE
UNIVERSITÄT **DARMSTADT**

Problem Formulation

max QP $M(DNN(H.264(V,$

- M Downstream metric (*e.g.*, mIoU)
- DNN Downstream deep vision model (*e.g.*, DETR)
- H.264 H.264 encoding-decoding mapping
- **V** Video clip to be coded of the shape $\mathbb{R}^{T\times H\times W}$

TECHNISCHE
UNIVERSITÄT DARMSTADT

Problem Formulation

max nax M(DNN(H.264(**V**, C $_{\theta}$ (**V**, *b*))))
^{QP}

- M Downstream metric (*e.g.*, mIoU)
- DNN Downstream deep vision model (*e.g.*, DETR)
- H.264 H.264 encoding-decoding mapping
- **V** Video clip to be coded of the shape $\mathbb{R}^{T\times H\times W}$
- C_θ **Control network** (predicts macroblock-wise quantization parameters $QP \in [0,1,\ldots,51]^{T\times H/16\times W/16}$)

Problem Formulation

max nax M(DNN(H.264(**V**, C $_{\theta}$ (**V**, *b*))))
^{QP} s.t. $\tilde{b} \leq b$.

- M Downstream metric (*e.g.*, mIoU)
- DNN Downstream deep vision model (*e.g.*, DETR)
- H.264 H.264 encoding-decoding mapping
- **V** Video clip to be coded of the shape $\mathbb{R}^{T\times H\times W}$
- C_θ **Control network** (predicts macroblock-wise quantization parameters $QP \in [0,1,\ldots,51]^{T\times H/16\times W/16}$)
- *b* Target bandwidth
 \tilde{b} Actual induced ba
- Actual induced bandwidth

max nax M(DNN(H.264(**V**, C $_{\theta}$ (**V**, *b*))))
^{QP} s.t. $\tilde{b} \leq b$.

max nax M(DNN(H.264(**V**, C $_{\theta}$ (**V**, *b*))))
^{QP} s.t. $\tilde{b} \leq b$.

 \neq H.264 encoding-decoding is non-differentiable

max nax M(DNN(H.264(**V**, C $_{\theta}$ (**V**, *b*))))
^{QP} s.t. $\tilde{b} \leq b$.

- \neq H.264 encoding-decoding is non-differentiable
- \neq Actual induced bandwidth is also non-differentiable

max nax M(DNN(H.264(**V**, C $_{\theta}$ (**V**, *b*))))
^{QP} s.t. \tilde{b} $\leq b$.

- \neq H.264 encoding-decoding is non-differentiable
- ℓ Actual induced bandwidth is also non-differentiable
- E **Straight forward application of end-to-end learning not possible**

Differentiable Codec Surrogate Model

• Learn a differentiable surrogate model to approximate non-differentiable mappings

[5] W. Grathwohl *et al.*, "Backpropagation through the void: Optimizing control variates for black-box gradient estimation," in *ICLR*, 2018. Christoph Reich | 1st Workshop on AI for Streaming @ CVPR 15

Differentiable Codec Surrogate Model

• Learn a differentiable surrogate model to approximate non-differentiable mappings

• We present a differentiable surrogate model predicting both the **coded video** and the **file size** (bandwidth)

[5] W. Grathwohl *et al.*, "Backpropagation through the void: Optimizing control variates for black-box gradient estimation," in *ICLR*, 2018. Christoph Reich | 1st Workshop on AI for Streaming @ CVPR 15

Differentiable Codec Surrogate Model

• Learn a differentiable surrogate model to approximate non-differentiable mappings

- We present a differentiable surrogate model predicting both the **coded video** and the **file size** (bandwidth)
- Control variates theory used for learning the surrogate [5]

[5] W. Grathwohl *et al.*, "Backpropagation through the void: Optimizing control variates for black-box gradient estimation," in *ICLR*, 2018. Christoph Reich | 1st Workshop on AI for Streaming @ CVPR 15

Computer Vision Group

Christoph Reich | 1st Workshop on AI for Streaming @ CVPR 16

Surrogate Results

H.264 **Our surrogate model** QP map 5 25 45 $QP = 0$ $QP = 51$ $QP = 35$

• **Our proposed surrogate approximates H.264 video distortion well**

TECHNISCHE
UNIVERSITAT **DARMSTADT**

Surrogate Results

- **Our proposed surrogate approximates H.264 video distortion well**
- Relative file size (bandwidth) error typically **below 5%**

Deep Video Codec Control Pipeline

Deep Video Codec Control Pipeline

• Learn control network **end-to-end using the Lagrangian function** of the constrained optimization problem

Deep Video Codec Control Pipeline

- Learn control network **end-to-end using the Lagrangian function** of the constrained optimization problem
- We **regularize** the control network to generate a bandwidth close to the target bandwidth

Codec Control Results

Table: Semantic segmentation validation results on Cityscapes using a DeepLabV3 model.

Codec Control Results

Table: Semantic segmentation validation results on Cityscapes using a DeepLabV3 model.

• **Our Deep Codec Control consistently outperformed 2-pass ABR**

Codec Control Results

Table: Semantic segmentation validation results on Cityscapes using a DeepLabV3 model.

- **Our Deep Codec Control consistently outperformed 2-pass ABR**
- We preserve up to **20% more semantic accuracy** than 2-pass ABR

Downstream Task Transfer Result

Table: Transfer results of our Deep Video Codec Control from **optical flow estimation** → **semantic segmentation** on Cityscapes.

Downstream Task Transfer Result

Table: Transfer results of our Deep Video Codec Control from **optical flow estimation** → **semantic segmentation** on Cityscapes.

 ℓ Transferring between downstream task during inference leads to a drop in vision performance

Downstream Task Transfer Result

Table: Transfer results of our Deep Video Codec Control from **optical flow estimation** → **semantic segmentation** on Cityscapes.

 ℓ Transferring between downstream task during inference leads to a drop in vision performance

• Our end-to-end learned codec control learns a task-specific behavior

• **We present the first end-to-end learnable codec control for a standard codec**

- **We present the first end-to-end learnable codec control for a standard codec**
- Our Deep Video Codec Control adheres to existing **standardizations**, **optimizes vision performance**, and **performs rate control**

- **We present the first end-to-end learnable codec control for a standard codec**
- Our Deep Video Codec Control adheres to existing **standardizations**, **optimizes vision performance**, and **performs rate control**

Future research questions:

- How to support multiple downstream tasks with a single codec control?
- How to generalize our Deep Video Codec Control to other standard codecs (*e.g.*, H.265)?

TECHNISCHE
UNIVERSITAT **DARMSTADT**

A Perspective on Deep Vision Performance with Standard Image and Video Codecs

Deep Video Codec Control for Vision Models

Questions?

References

- [1] C. E. Shannon, "Communication in the Presence of Noise," *Proceedings of the IRE*, 1949.
- [2] Y. Blau *et al.*, "Rethinking lossy compression: The rate-distortion-perception tradeoff," in *ICML*, 2019.
- [3] Y. Zhang *et al.*, "A survey on perceptually optimized video coding," *ACM Comput. Surv.*, vol. 55, no. 12, pp. 1–37, 2023.
- [4] T. Wiegand *et al.*, "Overview of the H.264/AVC video coding standard," *IEEE Trans. Circ. Syst. Video Tech.*, vol. 13, no. 7, pp. 560–576, 2003.
- [5] W. Grathwohl *et al.*, "Backpropagation through the void: Optimizing control variates for black-box gradient estimation," in *ICLR*, 2018.