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Semantic Scene Completion (SSC)

n input images

Single input image Dense 3D geometry & semantics

✓ Comprehensive 3D scene understanding task
✓ Applications in robotics, autonomous driving, medical image analysis, and civil engineering
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Related Work: SSC

Geometric & 3D semantic supervision (e.g., [1])

– Ground truth very expensive – Special hardware needed
– Infeasible to scale

2D supervision (e.g., [2])

– Still, expensive to obtain
– Limited generalization

Large-scale SSC annotations infeasible→ unsupervised SSC

[1] S. Song et al., “Semantic scene completion from a single depth image,” in CVPR, 2017, pp. 190–198.
[2] Y. Huang et al., “SelfOcc: Self-supervised vision-based 3D occupancy prediction,” in CVPR, 2024, pp. 19 946–19 956.
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SceneDINO

Single Input Image

SceneDINOSceneDINO

3D Feature Field

Distill & ClusterDistill & Cluster

SSC Prediction

✓ Fully unsupervised ✓ Multi-view self-supervision ✓ Feed-forward inference
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Model Architecture

I

ξ

• Single input image I

• 2D encoder-decoder ξ → dense embedding E

• Pixel embedding → camera ray
• Implicit MLP head ϕ(xi, eu) = (fx, σx)

• Seg. head h predicts semantics px
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SceneDINO Training
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Unsupervised Segmentation

• Goal: Learn unsupervised segmentation head

• Idea: Magnify semantic correspondence & cluster features
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Results: Unsupervised SSC

• KITTI-360-SSCBench experiments (full range 51.2 m validation)

Method Unsupervised Target features mIoU (in %, ↑)
S4C [3] (2D supervised) ✗ n/a 10.19

S4C [3] + STEGO [4] ✓ DINO 6.60

[3] A. Hayler et al., “S4C: Self-supervised semantic scene completion with neural fields,” in 3DV, 2024.
[4] M. Hamilton et al., “Unsupervised semantic segmentation by distilling feature correspondences,” in ICLR, 2022.
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Results: Unsupervised SSC

Input Image SceneDINO S4C + STEGO Ground Truth

Road Sidewalk Building Fence Pole Other Object Traffic Sign Vegetation Terrain Person Car Other Vehicle Motorcycle Bicycle
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Results: SceneDINO in 2D

Input Image

DINO

SceneDINO
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Results: Multi-View Feature Consistency

• Multi-view consistency results using optical flow alignment

KITTI-360 RealEstate10K
Method

L1 (↓) cos-sim (↑) L1 (↓) cos-sim (↑)
DINO [5] 16.06 0.70 14.41 0.75
SceneDINO (w/ DINO) 6.45 0.93 5.87 0.95

DINOv2 [6] 15.83 0.70 14.20 0.75
FiT3D [7] 7.02 0.93 5.67 0.95
SceneDINO (w/ DINOv2) 5.24 0.96 4.87 0.97

SceneDINO’s features are significantly more multi-view consistent

[5] M. Caron et al., “Emerging properties in self-supervised vision transformers,” in ICCV, 2021.
[6] M. Oquab et al., “DINOv2: Learning robust visual features without supervision,” TMLR, 2024.
[7] Y. Yue et al., “Improving 2D feature representations by 3D-aware fine-tuning,” in ECCV, 2024.
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Conclusion

We presented SceneDINO for unsupervised SSC

• Multi-view self-supervision effective for 3D scene understanding

• Single image→ 3D geometry & expressive features

• Distilling & clustering leads to SoTA accuracy in unsupervised SSC

• Strong linear probing, multi-view consistency, and domain generalization
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Results: SceneDINO Analysis

• Analysing camera poses and target features

∆ mIoU mIoU Configuration

-0.12 7.88 w/ estimated ORB-SLAM3 poses
— 8.00 Full framework (SceneDINO)

+1.08 9.08 DINOv2 target features (vs. DINO)

SceneDINO can benefit from better target features

• Linear probing features (w/ 2D sem. GT)

Probing approach Target features mIoU

DINO 9.34Linear DINOv2 10.57

S4C (full training) n/a 10.19

Linear probing outperforms 2D
supervised S4C
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