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Abstract

Standardized image coding builds the core of many image processing pipelines in the
face of storage or network bandwidth requirements. However, standard codecs, such as
JPEG, are optimized w.r.t. human quality assessment. The performance of downstream
deep vision models is not considered by standard codecs. As deep vision models typically
focus on silent parts or frequencies of an image, performing inference on JPEG-coded
images leads to a vast deterioration in downstream performance. This thesis aims to
develop a novel Deep Image Codec Control augmenting JPEG coding for deep vision
models without breaking standardization. Instead of developing a novel image coded for
deep vision models we augment JPEG, as standardization is required by the vast majority
of real-world applications. Our codec control is trained in an end-to-end setting and
predicts optimized codec parameters to preserve downstream performance and meet a
given file size requirement. By considering the adherence to existing standardizations,
downstream deep vision performance, and a dynamic target file size our Deep Image
Codec Control is applicable to a wide range of real-world applications. To facilitate end-
to-end learning we propose a novel differentiable JPEG coding approach. We also present
a novel differentiable JPEG file size model, regressing the file size of the encoded JPEG
image. This enables our Deep Image Codec Control learning to target a given file size
condition in an end-to-end fashion. We showcase the feasibility of Deep Image Codec
Control on three common computer vision tasks (image classification, object detection,
and semantic segmentation). While only performing on par with existing approaches, our
end-to-end learnable Deep Image Codec Control offers a novel and alternative direction
for optimizing existing image codecs for deep vision models.

Note: Some parts of this thesis (Differentiable JPEG Coding, cf. Sec. 4.1) have been
accepted at the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
as a full conference paper with the title ”Differentiable JPEG: The Devil is in the De-
tails”. The paper will appear in the Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision 2024 [1]. The papers project page is available
at https://christophreich1996.github.io/differentiable_jpeg/. The
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proposed differentiable JPEG implementation is available at https://github.com/
necla-ml/Diff-JPEG. The preprint of the paper is available at https://doi.org/
10.48550/arXiv.2309.06978.

Zusammenfassung

Die standardisierte Bildcodierung bildet den Kern vieler Bildverarbeitungspipelines hin-
sichtlich Speicher- oder Netzwerkbandbreitenanforderungen. Standardcodecs wie JPEG
sind jedoch auf die menschliche Qualitätsbewertung optimiert. Die Performance von
Deep-Vision-Modellen wird von Standardcodecs nicht berücksichtigt. Da Deep-Vision-
Modelle sich in der Regel auf einzelne Teilen oder Frequenzen eines Bildes fokussieren,
führt dies zu einer erheblichen Verschlechterung der Performance, wenn JPEG-codierte
Bilder von Deep-Vision-Modelle analysiert werden. Diese Arbeit zielt darauf ab, eine
neuartige Tiefe Bild Codec Regelung zu entwickeln, die die JPEG-Codierung kontrolliert
für Deep-Vision-Modelle, ohne dabei vorherrschende Standardisierungen zu brechen.
Anstatt einen neuen Bildcodec für Deep-Vision-Modelle zu entwickeln, erweitern wir
JPEG, da die Standardisierung für die überwiegende Mehrheit der Anwendungen es-
senziell ist. Unsere Codec-Steuerung wird in einem End-to-End-Setting trainiert und
bestimmt optimierte Codec-Parameter, um die nachgelagerte Leistung zu erhalten und die
vorgegebene Dateigröße einzuhalten. Durch Berücksichtigung der Einhaltung bestehender
Standardisierungen, der Deep-Vision-Performance und einer dynamischen Ziel-Dateigröße
ist unsere Tiefe Bild Codec Regelung in vielen realen Anwendungen einsetzbar. Um unsere
Tiefe Bild Codec Regelung mittels End-to-End-Training zu lernen, präsentieren wir eine
neue differenzierbare JPEG Implementierung. Wir stellen zusätzlich zu unserer differen-
zierbare JPEG Implementierung auch ein differenzierbares Modell zur Bestimmung der
Dateigröße einer codierten JPEG-Datei vor. Dieses Modell ermöglicht es unsere Tiefe
Bild Codec Regelung Codec Parameter zu bestimmen, welche zu einer vorgegebenen
Dateigröße führen. Wir zeigen die Anwendung unserer Tiefe Bild Codec Regelung anhand
von drei Standard Computer Vision Problemen (Bildklassifikation, Objekterkennung und
semantische Segmentierung). Obwohl unsere Tiefe Bild Codec Regelung nur zu einer
ähnlichen Performance bestehender Ansätze führt, bietet unsere End-to-End Tiefe Bild
Codec Regelung eine neue und alternative Möglichkeit zur Optimierung bestehender
Bildcodecs für Deep-Vision-Modelle.

Hinweis: Einige Teile dieser Arbeit (Differenzierbare JPEG-Codierung, vgl. Sec. 4.1) wur-
den als Konferenzveröffentlichung mit dem Titel ”Differentiable JPEG: The Devil is in the
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Details” bei der IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
angenommen. Das Papier wird in den Proceedings der IEEE/CVF Winter Conference on
Applications of Computer Vision 2024 veröffentlicht werden [1]. Die Projektseite des
Papers ist unter folgender URL verfügbar: https://christophreich1996.github.
io/differentiable_jpeg/. Die vorgestellte differenzierbare JPEG-Implementierung
ist unter https://github.com/necla-ml/Diff-JPEG verfügbar. Der Preprint der
Konferenzveröffentlichung is verfügbar unter https://doi.org/10.48550/arXiv.
2309.06978.
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Notations

This chapter provides an overview of the utilized notations in this thesis. Note this thesis
mainly follows the notation of the Deep Learning book by Goodfellow et al. [2] and my
previous thesis [3].

Numbers, Array, Tensors and Sets

a A scalar
a A vector
A A matrix
A A tensor
In Identity matrix with n rows and n columms
diag(a) A square, diagonal matrix with diagonal entries given by a
R Set of all real numbers
RH×W Set of real numbers over the dimensions H and W
R+ Set of all positive real numbers (without 0)
{0, 1, . . . , n} The set of all integers between 0 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b
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Indexing

ai Element i of vector a , with indexing starting at 1
a−i All elements of vector a except for element i
Ai, j Element i, j of matrix A

Ai, : Row i of matrix A

A:, i Column i of matrix A

Ai, j, k Element (i, j, k) of 3d tensor A
A:, :, i 2d slice of 3d tensor A

Linear Algebra Operations

A⊺ Transpose of matrix A

A+ Moore-Penrose pseudoinverse of A
A⊙ B Element-wise product of A and B

det(A) Determinant of A
A ∗ K Convolution operation between the matrices A and K

A ∗⊺ K Transposed convolution between the matrices A and K

Tr(X) Trace of the matrix X

Calculus

dy
dx Derivative of y with respect to x
∂y
∂x Partial derivative of y with respect to x

∇xy Gradient of y with respect to x

∇Xy Matrix derivatives of y with respect to X

∇Xy Tensor containing derivatives y with respect to X
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Probability

E[x] Mean of the vector x
E[f(x)] Expectation of the function f(x)

Var[x] Variance of the vector x
Cov[X] Covariance of the matrix X

Std(X) Standard deviation of the tensor X
N (x; µ, Σ) Gaussian distribution over x with mean µ and covariance Σ

N (0, 1) Normal distribution with a mean of 0 and a variance of 1
U(x; 0, 1) Uniform distribution over x in the interval [0, 1]
U(0, 1) Uniform distribution with an interval of [0, 1]
KL(P1||P2) Kullback-Leibler divergence of P1 and P2

P (a) A probability distribution over a discrete variable
p(a) A probability distribution over a continuous variable
Ex∼p [f(x)] Expectation of f(x) with respect to the distribution p

Functions

f : A → B The function f with domain A and range B
f(X; Θ) A function of X parametrized by Θ

log(x) Natural logarithm of x ∈ R
exp(x) Exponential function of x ∈ R
max(x, y) Maximum function of x, y ∈ R
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Abbreviations

ACC accuracy.
BiLSTM Bidirectional Long Short-Term Memory [4], [5].
BN Batch Normalization [6].
CBN Conditional Batch Normalization [7].
CNN convolutional neural network.
DCT discrete cosine transform.
DETR Detection Transformer [8].
FGSM Fast Gradient Sign Method [9].
GN Group Normalization [10].
IFGSM Iterative Fast Gradient Sign Method [11], [12].
MAE mean absolute error.
mAP mean Average Precision.
MARE mean absolute relative error.
mIoU mean Intersection-over-Union.
MSE mean squared error.
PSNR peak signal-to-noise ratio.
RLE run-length encoding.
SSIM structural similarity index measure.
STE Straight-Through Estimator [13].
ViT Vision Transformer [14].
XAI explainable AI [15].
XCA Cross-Covariance Attention [16].
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1. Introduction

Lossy image compression is a necessity in the face of storage or network bandwidth
requirements. Image, as well as video data, is a major and constantly increasing source of
internet traffic. A significant and increasing amount of this image data is not consumed
by humans but analyzed by deep learning-based vision models. However, standard lossy
image codecs, such as JPEG [17], are optimized to trade compression strength against
image distortion w.r.t. human quality assessment [18]. Downstream performance of deep
vision models (e.g., object detection performance) is not considered.

As deep vision models tend to focus on silent parts or frequencies of an image, the down-
stream performance of standard vision models vastly deteriorates as compression strength
increases [19]–[25]. This behavior is showcased in Fig. 1.1 for three common computer
vision tasks: semantic segmentation, object detection, and image classification. Otani et
al. demonstrated a similar behavior for the downstream task of action recognition [23].

JPEG quality
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Figure 1.1. Deep vision performance on JPEG-coded images. We report downstream perfor-
mance for three common vision tasks: semantic segmentation (DeepLabV3 [26]), object detection
(DETR [8]), and image classification (ViT-B [14]). As the compression strength increases (lower
JPEG quality), downstream performance vastly deteriorates. We use the predictions on the original
images as pseudo labels. More details and additional experiments are provided in Sec. 2.2.

Standardized lossy image codecs are the de facto standard for the vast majority of applica-
tions requiring image compression [18]. While deep learning-based image codecs tend

1



to outperform standard image codecs in benchmark settings, the most widely used lossy
image coding approach remains JPEG [17], [18], [27]–[31]. Standard codecs offer better
support for vastly different compression strengths, provide strong controllability over the
encoding, and are computationally more efficient than deep image codecs. Additionally,
standardization builds the basis of many applications. In contrast, no widely supported
standard for deep image codecs has emerged yet, severely limiting the general applicability
of deep image codecs [32].

This thesis aims to augment standard JPEG coding for deep vision models while adhering
to existing standardizations. Given an image and target file size we want to learn a model
predicting JPEG codec parameters (quantization tables) such that downstream deep vision
performance is preserved. Additionally, the actual file size of the JPEG-encoded image
should adhere to the target file size. We formulate this task as a constrained optimization
problem [24].

max
(codec parameters)

Deep Vision Model Performance

s.t. Actual file size ≤ Target file size.
(1.1)

We aim to learn a deep control network to solve this constrained optimization problem
for different images and dynamic file size conditions. This thesis presents the first end-to-
end learned deep image codec control for standard image codec while considering both
downstream vision performance and a dynamic target file size. However, facilitating end-
to-end learning of the deep image codec control is non-trivial since both JPEG encoding-
decoding and the actual file size are non-differentiable.

To overcome the non-differentiability of JPEG encoding-decoding this thesis presents a
novel differentiable JPEG coding approach. While various differentiable JPEG approaches
have been proposed (e.g., [33], [34]) we demonstrate that all existing approaches fail
to approximate standard JPEG well when utilizing strong compression strengths (low
JPEG quality). We show that existing differentiable JPEG approaches fail to model
crucial operations of standard JPEG (e.g., not considering discretizations of standard
JPEG) and make suboptimal design choices (e.g., poor rounding approximations). To
remedy the outlined deficiencies, we present a novel differentiable JPEG approach. While
drawing inspiration from prior differentiable JPEG implementations, our differentiable
JPEG approach makes use of novel components, such as differentiable clipping, and is the
first to model all important details of standard (non-differentiable) JPEG. In addition, we
also propose a Straight-Through Estimator [13] (STE) variant of our differentiable JPEG.
Our differentiable JPEG approach is the first to provide an accurate approximation of
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standard JPEG across the entire range of compression strengths while offering gradients
w.r.t. all inputs. This is qualitatively showcased in Fig. 1.2 while the approach by et
al. [33] breaks down for a JPEG quality of 1 (strong compression) our differentiable JPEG
approach offers a strong approximation over the while JPEG quality range. While we
utilize our differentiable JPEG approach to optimize JPEG for deep vision models, possible
applications of our approach range from differentiable data augmentation [35]–[41], data
hiding [42], [43], and deep-fake detection [44] to adversarial attacks [33], [45].

JPEG quality = 50 JPEG quality = 1
JPEG (OpenCV) Diff. JPEG (Shin et al.) Diff. JPEG (ours) JPEG (OpenCV) Diff. JPEG (Shin et al.) Diff. JPEG (ours)

PSNR = 43.13dB PSNR = 43.25dB PSNR = 18.05dB PSNR = 36.39dBReference
SSIM = 0.996 SSIM = 0.997

Reference
SSIM = 0.616 SSIM = 0.978

Figure 1.2. Differentiable JPEG teaser results. For a JPEG quality of 50, both Shin et al. [33] and
our differentiable JPEG approach approximate the standard JPEG coding well. When reducing
the JPEG quality to 1, the approach by Shin et al.does not approximate the JPEG coding well,
while our differentiable JPEG still leads to a strong approximation. Structural similarity index
measure (SSIM) and peak signal-to-noise ratio (PSNR) measured w.r.t. the coded image of the
(non-differentiable) reference JPEG implementation (OpenCV [46]).

To enable end-to-end learning w.r.t. the file size condition, we present a novel differen-
tiable JPEG file size surrogate model. This surrogate model consumes the (differentiably)
quantized DCT features and regresses the size of the JPEG-coded byte file. Our differen-
tiable JPEG file size model enables us to derive gradient-based feedback w.r.t. the actual
generated file size given an image and JPEG coding parameters.

With both our differentiable JPEG coding approach and JPEG file size surrogate model we
can formulate Eq. (1.1) as an end-to-end learning problem. In particular, we end-to-end
(self-supervised) learn a Deep Image Codec Control to solve our constrained optimization
problem in a single forward pass. The core of our Deep Image Codec Control, the control
network, consumes a file size condition and predicts JPEG quantization tables optimizing
downstream deep vision performance while adhering to the given file size condition. By
utilizing the downstream prediction on the original (not coded) image as a pseudo label
our Deep Image Codec Control training does not require any annotations for training1.
1Training the respective downstream model might require human annotations.
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Figure 1.3. Deep Image Codec Control teaser results. Results of our Deep Image Codec Control
(in yellow ■■). Preservation semantic segmentation performance (a), measured by pixel-wise
accuracy (ACC). Adherence to a dynamic file size condition (b), measured by mean absolute
relative error (MARE). For reference, we also show the performance of our baselines (in purple ■■
and green ■■).

We showcase the application of our Deep Image Codec Control to three common computer
vision tasks: image classification, object detection, and semantic segmentation. By learning
a Deep Image Codec Control for a specific downstream task and model, we showcase the
general application of our approach. While our approach only leads to on-par results with
existing approaches in preserving downstream performance and adhering to a dynamic
target file size (cf. Fig. 1.3), we demonstrate the general feasibility of end-to-end learning
to control JPEG for vision models. We outline difficulties in training our Deep Image
Codec Control, such as training instability, and suggest future directions to remedy these
difficulties.

1.1. Contributions

This thesis consists of five main contributions toward an end-to-end learnable Deep Image
Codec Control. Our five main contributions are:

1. We thoroughly analyze the impact of JPEG coding on downstream deep vision
performance. In particular, we show for three common downstream tasks that
downstream deep vision performance vastly deteriorates when JPEG coding is
utilized. For strong compression strengths, downstream performance for all tasks
almost completely collapses.
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2. We formulate the image codec control problem as a constrained optimization problem
of preserving downstream deep vision performance and meeting a target file size.
We present a relaxed loss-based training objective for learning a lightweight control
network to optimize the constrained optimization objective in an end-to-end learning
setting.

3. To enable a gradient flow w.r.t. the downstream deep vision models performance we
propose a novel differentiable JPEG encoding-decoding approach. Our differentiable
JPEG approach outperforms all existing differentiable JPEG methods.

4. We present a differentiable JPEG file size model, estimating the file size of the
encoded image given both the image to be codec and codec parameters. This
enables us to provide gradient-based feedback w.r.t. the generated file size.

5. We propose an end-to-end learnable Deep Image Codec Control for JPEG. We
showcase the feasibility of our approach by showcasing the application of our Deep
Control to three common vision tasks (image classification, semantic segmentation,
and object detection).
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2. Background

This chapter introduces the required fundamentals for this thesis and provides additional
details on our motivation. In particular, we first review the JPEG compression standard
before showcasing the downstream vision performance of various deep vision models on
JPEG-coded images.

2.1. Background: The JPEG Coding Standard

The JPEG (Joint Photographic Experts Group) compression standard [17], [48], in the
baseline mode, uses both lossy and lossless coding to achieve efficient image compression.
The encoding starts by converting the original RGB image to the YCbCr color space and
performing chroma downsampling. The YCbCr channels are then transformed into the
frequency domain using a patch-wise discrete cosine transform (DCT). A given JPEG
quality controls the quantization strength of the DCT features, trading file-size against
distortion (cf. Sec. 2.1.3). Finally, the compressed JPEG file is produced using lossless

Original image Encoding (lossy)

Color conv.
(RGB → YCbCr)

Chroma
downsampling

Differentiable

DCT Quantization

JPEG quality

Lossless
encoding

JPEG file

Decoding of
lossless enc.

Decoding of lossy encoding

DequantizationInverse DCT

Differentiable

Chroma
upsampling

Color conv.
(YCbCr → RGB)

JPEG-coded image

Figure 2.1. The JPEG encoding-decoding pipeline. The original input image is encoded to a
JPEG file in a lossy manner. To recover the coded image the encoding is reversed in the decoding.
JPEG uses lossless coding in conjunction with lossy coding.
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coding. During decoding, the lossless and lossy encoding steps are reversed to reconstruct
the JPEG-coded image from the JPEG file. Fig. 2.1 illustrates the JPEG coding process.

In general, JPEG encoding-decoding can be seen as a function mapping from an original
(raw) RGB image I and the JPEG quality q to the JPEG-coded (distorted) image Î

JPEG (I, q) = Î, q ∈ {1, 2, . . . , 99}
I, Î ∈ {1, . . . , 255}3×H×W.

(2.1)

H and W denote the image resolution. Some implementations consider a max. q of 100,
others of 99, for the sake of generality we use 99 as max. q. In the next subsections, we
describe the internals of the JPEG function in detail.

2.1.1. JPEG encoding

The JPEG encoding process compresses a given image to a binary JPEG file and is composed
of four main steps followed by lossless encoding (cf. Fig. 2.1). In the following, we explain
the details of all encoding steps.

Color conversion (RGB → YCbCr). Digital imagery is typically displayed using the RGB
color space. JPEG makes use of the YCbCr color space for compression. To this end, JPEG
converts the RGB image to the YCbCr color space by a pixel-wise affine transformation.

⎡⎣ Y
Cb
Cr

⎤⎦ =

⎡⎣ 0.299 0.587 0.114
−0.168736 −0.331264 0.5
0.5 −0.418688 −0.081312

⎤⎦⎡⎣RG
B

⎤⎦+

⎡⎣ 0
128
128

⎤⎦ (2.2)

Chroma subsampling. The human eye tends to be more sensitive to variations in bright-
ness than to color details [49]. This motivates the use of chroma subsampling in JPEG. By
discarding less relevant information to the human eye, chroma subsampling introduces a
minimal loss in perceptual quality while leading to compression. Chroma subsampling is
typically implemented by an anti-aliasing operation (e.g., 2D convolution) followed by
standard downsampling and is applied to both chroma channels (Cb & Cr).
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Patch-wise discrete cosine transform. JPEG compression utilizes a patch-wise (and
channel-wise) DCT-II operation to transform an image into a frequency (DCT) space.
Before applying the DCT, non-overlapping 8× 8 patches from the chroma-subsampled
YCbCr image are extracted. For a given (flatten) patch p ∈ {0, 1, . . . , 255}64, the DCT is
described by p̂ = a⊙Gp. ⊙ denotes the Hadamard product,G ∈ R64×64 contains the DCT
coefficients, and a is a scaling factor. G is computed byG8u+v,8i+j = cos

(︁
2x+1
16

)︁
cos
(︂
2y+1
16

)︂
and a by a8u+v = 1

4α(u)α(v) with α(u) =

{︄
1√
2

if u = 0

1 otherwise
and u, v, i, j ∈ {0, 1, . . . , 7}.

p̂ ∈ R64 represents the transformed patch. For simplicity, we omit the channel (YCbCr)
and patch indexing.

Quantization. Through quantization, controlled by the JPEG quality q, frequencies are
suppressed for the sake of compression. During the quantization step, the given JPEG
quality q is mapped to a scale factor s by:

s(q) =

{︄
5000
q if q < 50

200− 2q otherwise.
(2.3)

The scale factor is applied to the (standard) quantization table QTs ∈ {1, 255}8×8 by
QT̂ = sQTs+50

100 . The scaled quantization table is applied to each 2D DCT patch P̂ ∈ R8×8

(reshaped p̂) followed by the application of the rounding function Pm,n =

⌊︃
P̂m,n

QT̂m,n

⌉︃
with

m,n ∈ {0, 1, . . . , 7}. ⌊·⌉ denotes the rounding to the next integer. Note that standard
JPEG performs integer arithmetic to compute s and QT̂ this is equivalent to applying
the floor function ⌊·⌋. Additionally, QT̂ is clipped to the integer range of {1, 2, . . . , 255}.
Note JPEG also supports custom quantization tables and uses two separate tables for the
luma channel (Y) as well as the chroma channels (Cb & Cr). For simplicity, we do not
distinguish between quantization tables.

Lossless encoding. JPEG utilizes lossless entropy coding to compress all quantized DCT
patches P̂ . The lossless encoding first arranges the lossy encoded patches in a zigzag
order before performing run-length encoding. Finally, Huffman coding is performed to
build the binary JPEG file. Note the final JPEG file includes not only the encoded image
content but also the scaled quantization tables and other markers including information
such as the image resolution.
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2.1.2. JPEG decoding

The JPEG decoding converts the compressed binary JPEG file back to an RGB image (cf.
Fig. 2.1). Four main steps and the inversion of the lossless encoding operations compose
the decoding. On a high level, every decoding step reverses the corresponding encoding
step (cf. Fig. 2.1).

Decoding of lossless encoding. The Huffman-encoded JPEG file is decoded before the
run-length encoding is undone. Finally, the information is rearranged as a pixel grid with
three channels. Note that lossless encoding and decoding can be viewed as an identity
mapping.

Dequantization. To dequantize, the quantized DCT features are multiplied with the
respective scaled QT (luma or chroma table) P̃ = P ⊙QT̂ . For simplicity, we omit the
distinction between the luma and chroma channels.

Inverse patch-wise discrete cosine transform. To convert the DCT information back
into pixel space, the inverse discrete cosine transform is applied to each 8× 8 patch.

Chroma upsampling. To recover the original image resolution, both chroma channels
are upsampled using bilinear interpolation.

Color conversion (YCbCr → RGB). The coded image (YCbCr) is converted back into
the RGB color space by applying the inverse of the previous affine transformation (cf.
Eq. (2.2))

⎡⎣RG
B

⎤⎦ =

⎛⎝⎡⎣ Y
Cb
Cr

⎤⎦−

⎡⎣ 0
128
128

⎤⎦⎞⎠⎡⎣ 1 0 1.402
1 −0.344136 −0.714136
1 1.772 0

⎤⎦ . (2.4)
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(a) Original image (b) JPEG quality 50 (c) JPEG quality 1

Figure 2.2. JPEG coding artifacts. (a) Original image, (b) JPEG-coded image with a JPEG quality
of 50, file size is 47.3kB (bottom image), and (b) coded image with a JPEG quality of 1, file size is
6.2kB (bottom image). Images from the Set14 [50] and OpenCV [46] JPEG used.

2.1.3. JPEG rate-distortion trade-off

JPEG has strong support for different compression strengths. By adjusting the JPEG quality
parameter q, different compression strengths can be achieved. A low JPEG quality results
in a small file size but leads to significant image distortion (cf. Fig. A.1b) since quantization
suppresses plenty of frequencies. Vice versa, a high JPEG quality leads to a larger file
size but reduces distortion (cf. Fig. 2.2b). This tradeoff is known as the rate-distortion
trade-off.

JPEG quality
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Figure 2.3. Rate-distortion trade-off. JPEG rate-distortion trade-off curve on the Set14 [50]
dataset. We report both the mean and two standard deviations.

JPEG employs the DCT in a patch-wise manner to achieve efficient compression. This
compression approach introduces distinctive artifacts in the resulting JPEG-coded image.
These artifacts manifest in various forms, including ringing, contouring, posterizing, and
most notably, block boundary artifacts. Among these artifacts, block boundary artifacts
are particularly noticeable when compressing natural images (cf. Fig. 2.2b).
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2.1.4. Non-differentiability of JPEG

The JPEG encoding-decoding process (cf. Eq. (2.1)) is an inherently discrete operation
that precludes the application of continuous differentiation. However, we can extend
all operations of the JPEG encoding-decoding to real-valued numbers. Consequently,
we can formulate a continuous JPEG function, JPEGc, that accepts continuous inputs in
terms of the original image and JPEG quality and produces a continuous coded image
(JPEGc : R3×H×W × [1, 99] → R3×H×W). This naive continuous generalization of the JPEG
encoding-decoding suffers from a major limitation. The gradient of JPEGc (w.r.t. to both
inputs) is zero almost everywhere (a.e.) and undefined at points of jump discontinuity.
This is caused by the reliance on rounding and floor functions in the encoding process.
This property inhibits the direct integration of JPEGc into gradient-based learning systems
(e.g., deep neural network training) as they rely on the availability of “useful” non-zero
gradients for optimization.

2.2. Deep Vision Performance on JPEG-Coded Images

While strong compression leads to increased image distortion, compression strength also
affects downstream deep vision performance. This behavior is also known as the rate-
distortion-accuracy trade-off [47]. In this section, we demonstrate empirically how JPEG
coding affects the performance of different deep vision models. In particular, we showcase
that all tested models struggle to maintain downstream performance. Our results on three
classical computer vision tasks: image classification (cf. Sec. 2.2.1), object detection (cf.
Sec. 2.2.2), and semantic segmentation (cf. Sec. 2.2.3), align with the findings by Otani et
al. [23] and Luo et al.[47]. Otani et al. observed that JPEG coding can vastly deteriorate
action recognition performance, similarly Luo et al. showed the same behavior for the task
of image classification.

2.2.1. Image classification

We tested different image classification networks on JPEG-coded ImageNet-1k [51] (cf.
Sec. 5.1.3) samples. In particular, we utilize three ResNet [52] variants and three Vision
Transformer [14] (ViT) [14] variants from timm [53] trained on ImageNet-1k. For
different JPEG quality values, we report the top-1 and top-5 accuracy w.r.t. the argmax
prediction on the original images (cf. Fig. 2.4).
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Fig. 2.4 showcases the image classification results. All models lose downstream per-
formance as stronger compression (lower JPEG quality) is utilized. We observe that,
in particular, smaller models struggle to maintain performance, whereas larger model
variants tend to be a bit more robust against JPEG coding.
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Figure 2.4. Image classification performance on JPEG-coded images. Performance of all models
vastly deteriorates as compression strength increases (lower JPEG quality). We employ the image
classification predictions obtained on the original images as pseudo labels. We report the top-1
ACC in green ■■ and the top-5 ACC in yellow ■■.

2.2.2. Object detection

For the downstream task of object detection, we utilize the Detection Transformer [8]
(DETR) model with different backbone networks (ResNet-50 & ResNet-101) on the COCO
2017 [54] dataset (cf. Sec. 5.1.3). For the full integer range of JPEG quality values,
we perform validation of the DETR models. We employ the prediction on the original
(non-coded) image as a pseudo label. In particular, we use the argmax class prediction
and bounding box prediction on the original image. We use the mean Average Precision
(mAP) metric to validate the object detection performance.

Consistent with the image classification results (cf. Fig. 2.4), object detection performance
vastly deteriorates as the compression strength increases (lower JPEG quality), as shown
in Fig. 2.5. Notably, the object detection performance deteriorates more evenly than image
classification. Similar to image classification a larger backbone network also leads to
slightly more robust object detections on JPEG-coded images.
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Figure 2.5. Object detection performance on JPEG-coded images. Performance of both DETR [8]
models vastly deteriorates as compression strength increases (lower JPEG quality). We employ the
object detection predictions obtained on the original images as pseudo labels. We report the mAP
in green ■■, the mAP50 in yellow ■■, and the mAP75 in blue ■■.

2.2.3. Semantic segmentation

In the case of semantic segmentation, we utilize the common DeepLabV3 [26] model
with different ResNet variants (ResNet-50 & ResNet-101) as backbones. Both variants are
trained on the Cityscapes [55] dataset and are provided by MMSegmentation [56]. We
measure the mean Intersection-over-Union (mIoU) between the prediction on the coded
image and the pseudo label (argmax prediction) on the original image.

As both in image classification and object detection, semantic segmentation performance
suffers when using a strong compression strength (low JPEG quality). This is showcased
in Fig. 2.6. Surprisingly, semantic segmentation downstream performance deteriorates
even more evenly over the JPEG quality range.
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Figure 2.6. Semantic segmentation performance on JPEG-coded images. Performance of both
models vastly deteriorates as compression strength increases (lower JPEG quality). We employ the
semantic segmentation predictions obtained on the original images as pseudo labels. We report
the mIoU (in blue ■■).
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2.2.4. Discussion: JPEG data augmentation

To introduce robustness against photometric noise and other transformations (e.g., flipping
or Gaussian noise) data augmentations are typically employed during training deep vision
model [39], [57], [58]. A naive approach for introducing robustness against JPEG
distortion would be to utilize JPEG coding as a data augmentation approach. This naive
approach entails two major limitations. First, it would be required to train downstream
models again from scratch using JPEG coding as a data augmentation technique1. Second,
Otani et al. [23] showed that using JPEG during training can only slightly introduce
robustness against JPEG-coded images. This behavior has also been showcased for H.264
coded videos on the task of semantic segmentation [24]. Due to these limitations, this
thesis proposes an alternative approach for approaching this problem that is orthogonal
to using data augmentation. We aim to augment/control JPEG such that only information
irrelevant to the downstream vision performance is discarded and performance is better
preserved than using standard JPEG. Note that our approach does not require any changes
to the downstream deep vision model.

1Or a sophisticated fine-tuning approach would be required.
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3. Related Work

This section reviews existing work in the scope of our Deep Image Codec Control. In
particular, we first introduce existing differentiable JPEG coding approaches and methods
for modeling the JPEG file size in a differentiable setting. Finally, we review existing work
on optimizing coding for deep vision models.

3.1. Differentiable JPEG Coding

STE-based approaches. In standard STE, the gradient of a non-differentiable function
is approximated by assuming a constant gradient of one [13]. During the forward pass,
the true non-differentiable function is used. STE has been shown to be effective in various
deep learning-based approaches [13], [59]–[62]. This technique is also used when the
gradient of a function would be zero a.e. (e.g., rounding function). Choi et al. [63] used
STE to propagate gradients through the rounding operation of the JPEG encoding [64].
InSTEad of assuming a constant gradient as in standard STE, Xie et al. [65] utilizes the
gradient of a tanh-based differentiable rounding approximation in the backward pass. Both
approaches do not model the JPEG quality scaling of the quantization tables, limiting the
general usability beyond the application proposed in the respective papers. Additionally,
the bounded nature of the quantization tables and the quantization table scale is not
considered. Nor is the bounded nature of the coded image modeled.

Surrogate model approaches. Another technique to achieve “useful” gradients is to
replace all non-differentiable components of JPEG coding (e.g., rounding, clipping, or floor-
ing) with differentiable approximations. The resulting differentiable JPEG approach is both
an approximation in the forward and backward pass. Shin et al. proposed the first differen-
tiable surrogate of the JPEG encoding-decoding [33]. A polynomial approximation of the
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rounding function ⌊x⌉+ (x− ⌊x⌉)3 enables the propagation of gradient through the round-
ing operation. Additionally, the quantization table scaling by the JPEG quality q is reformu-
lated to

s(q) =

{︄
50
q if q < 50

2− 2q
100 otherwise

and QT̂ = sQTs. Note this leads to a difference of 0.5

in the scale quantization table QT̂ compared to the standard scaling factor computa-
tion (cf. Eq. (2.3)), subsequently deteriorating the approximation performance. Other
approaches have been built on the approach by Shin et al. with slight modifications [34],
[47], [66]. InSTEad of a polynomial approximation, Xing et al. approximate the rounding
function with finite Fourier series approximation x−

∑︁10
k=1

(−1)k+1

kπ sin(2πkx). While Shin
et al. does not model integer divisions nor the bounded nature of the quantization tables
as well as the coded image, Xing et al. hard clips the coded image to the valid pixel range,
leading to a zero-valued gradient for clipped pixels.

Noise-based approaches. JPEG coding introduces unique distortion artifacts to the
coded image (cf. Sec. 2.1.3 and Fig. 2.2). This motivates noise-based approaches, wherein
JPEG coding is approximated by introducing specific noise into the original image. Zhu et
al. [43] achieves this by randomly applying dropout to the DCT features mimicking JPEG
distortion. However, applying random dropout offers very limited control over the precise
quality, leads to sparse gradients, and is only a coarse and stochastic approximation.
Zhang et al. [42] adds the true distortion as pseudo noise to the original image. While the
resulting coded images match the true coded image, this approach is equivalent to applying
STE to the full JPEG coding function. The resulting gradients are fully independent of
the JPEG function. Additionally, both approaches only offer gradients w.r.t. the original
image, severely limiting general applicability. Due to these major limitations, we do not
consider noise-based approach as differentiable approximations.
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3.2. Differentiable JPEG File Size Modeling

Estimating the file size given both an image and JPEG coding parameters is no-differentiable
as lossless utilizes discreet operation. Additionally, measuring the required bytes is also
no-differentiable. Further, the encoded JPEG file size is non-trivially dependent on both the
image content and the coding parameters. For instance, an entirely black image requires
vastly fewer bytes than a natural image encoded by the same JPEG coding parameters.
This behavior is qualitatively showcased in Fig. 3.1 and also causes the large standard
deviation in Fig. 2.3 (right).
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Figure 3.1. JPEG file size example. JPEG file size difference between a natural image from the
COCO dataset [67] and an entirely black image (same resolution). For encoding we used the
same encoding parameters (standard quantization tables used). While encoding both images with
the same encoding parameters the JPEG file size vastly differs.

To still provide gradient-based feedback w.r.t. the generated JPEG file size multiple differ-
entiable approximations of the JPEG file size have been introduced [47], [63], [65]. On a
high level, lossless JPEG encoding can be interpreted as a variant of entropy coding [17].
To this end, Luo et al. [47] proposed an entropy approximation approach. To approximate
the true probability mass function a three-layer feed-forward neural network is employed.
To mimic the actual JPEG lossless coding two separate feed-forward neural networks
are used, one for the luma channel and one for the chroma channels. Additionally, two
feed-forward networks are utilized for estimating the density function of zero frequency
and none-zero frequencies, respectively. While this entropy estimator-based approach can
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approximate the JPEG file size in a differentiable manner the estimated file size tends to
overshoot the actual file size, especially for larger bit-rates [47]. Xie et al. [65] proposes
an STE-based approach for approximating the JPEG run-length encoding. While this
approach closely resembles run-length encoding, JPEG Huffman encoding is not consid-
ered. This, especially, leads to a deterioration in the approximation of the JPEG file size
for high-resolution images. Choi et al. [63] modeled both the run-length and Huffman
encoding with a separate neural network. For modeling the run-length encoding symbol
prediction a Bidirectional Long Short-Term Memory [4], [5] (BiLSTM) is employed. To
achieve the final discrete symbol prediction the Gumbel-Softmax reparameterization trick
is applied [60]. However, the use of the Gumbel-Softmax reparameterization trick intro-
duces stochasticity to the file size prediction. For approximating the Huffman encoding
two feed-forward neural networks are employed for the luma channel and the chroma
channels, respectively.

In contrast to Xie et al. [65], we model both the run-length and JPEG Huffman encoding.
Instead of using a two-stage approach with Gumbel-Softmax reparameterization as Choi et
al. [63], we utilize a single powerful network for regressing the JPEG file size. This enables
the prediction of the JPEG file size without stochasticity.

3.3. Optimizing Image Coding for Vision Models

As deep vision models preserve imagery differently than humans research has been devoted
to optimizing image coding for deep vision models. This is also referred to as image coding
for machines. Deep image codecs offer support for custom objectives. Subsequently,
significant afford have been invested to learn deep image codecs for downstream deep
vision model [68]–[76]. Deep image codec approaches for machines can be broadly
clustered into feature-based (e.g., [68], [69]) and image-focused approaches (e.g., [71],
[72]). Image-focused approaches follow the standard encoding-decoding approach of
standard image codecs and recover a codec image. In contrast, feature-based image
coding approaches focus on compressing feature representations that can be used after
decoding for making downstream predictions. While deep image codecs offer the simple
integration of custom objectives (e.g., for optimizing downstream performance), can be
used to compress feature representations, and typically reach a better rate-distortion
trade-off their applicability is very limited in real-world settings. Compared to standard
lossy image codecs, deep image codes do not offer standardization as no standard has
emerged yet. Additionally, deep image codecs are significantly more computationally
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demanding and only offer limited control over the encoding. Reaching a specific file
size during inference is typically not supported. For a more detailed discussion on the
limitations and capabilities of deep image coding, we refer the reader to the respective
survey paper [29], [77], [78].

Another line of research has focused on optimizing standard codecs, such as JPEG, for
machines [24], [47], [63], [65], [79]–[82]. JPEG, as well as other standard codecs, offer
support for customizations of the encoding [17], [18], [83]. In particular, JPEG offers
support for custom quantization tables, controlling the quantization strength (cf. Sec. 2.1).
This has motivated recent approaches to optimize JPEGw.r.t. the encoding parameters [47],
[63], [65], [80]. More specifically, most approaches aim to optimize the JPEG quantization
tables, as the quantization tables offer a strong control of the encoding process [17],
[47]. GRACE [80] utilizes gradient feedback from a downstream model to analyze the
sensitivity to different DCT frequency bands of a downstream model to optimize the
quantization strength, no file size conditioning is supported. Luo et al. [47] propose an
approach for trading rate (file size) vs. image distortion and downstream accuracy. By
using continuous gradient-based optimization w.r.t. a loss-based criterion, trading rate
vs. distortion and accuracy, optimized quantization tables have been proposed. While
the proposed quantization tables maximize both distortion and accuracy the estimated
quantization tables are fixed and can not adapt to different images. A specific target file
size during inference is also not considered. Xie et al. [65] presented an approach for
optimizing the quantization tables, the color conversation parameters (RGB → YCbCr),
and downstream deep vision model weight w.r.t. to downstream performance and a target
file size. This approach also only considers fixed quantization tables during inference and
only targets a single file size condition during training. No dynamic conditioning during
inference is supported. Similar to Luo et al., Xie et al.also only estimates quantization
tables that are fixed during inference. Instead of employing fixed quantization tables
during inference, Choi et al. [63] learns a convolutional neural network (CNN) to predict
optimized quantization tables for a given input image (dynamic quantization tables). The
CNN is trained to predict optimized quantization tables w.r.t. both downstream deep
vision performance and a specific target file size. However, during inference, the learn
CNN can only generate dynamic quantization tables targeting the, during training, utilize
file size condition. To target different file sizes the CNN needs to be retrained which is
impractical when targeting a large range of different file sizes.
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In contrast to existing approaches, we want to learn a control network predicting dynamic
quantization tables and being able to adapt to different file size conditions during inference.
In particular, given an input image and a target file size our control network learns to
solve a constrained optimization problem w.r.t. downstream deep vision performance and
a target file size (cf. Eq. (1.1)). A high-level compression of our novel Deep Image Codec
Control and existing approaches is provided in Tab. 3.1.

Approach
Optimize deep vision

performance
Dynamic file size

condition
Dynamic quantization

tables

Luo et al. [47] 3 7† 7

Xie et al. [65] 3 7* 7

Choi et al. [63] 3 7* 3

Ours 3 3 3

* denotes the support of a (fixed) file size condition during training time
† rate-distortion-accuracy tradeoff can be achieved by loss weighting (no direct target file size)

Table 3.1. Overview of related work. A high-level overview of existing approaches in comparison
to our Deep Image Codec Control.
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4. Method

In this section, we introduce our Deep Image Codec Control methodology. First, we
introduce a novel differentiable JPEG coding approach to enable a gradient propagation
from the coded JPEG image to the JPEG parameters (e.g., quantization tables). Then we
introduce an approach for modeling the JPEG file size in a differentiable setting. This
allows us to compute a gradient-based signal for the generated file size. Finally, we
introduce our Deep Image Codec Control pipeline for deep vision models.

4.1. Differentiable JPEG Coding

We aim to build a continuous and differentiable approximation

JPEGdiff : [0, 255]3×H×W × [1, 99] → [0, 255]3×H×W (4.1)

of the full JPEG encoding-decoding function (cf. Eq. (2.1)). This approximation should
accurately resemble standard (non-differentiable) JPEG and yield gradients “useful” for
gradient-based optimization. To achieve this, we first take a surrogate model approach
(Sec. 4.1.1). Later we present the incorporation of the STE technique (Sec. 4.1.2).

Note our differentiable JPEG function can easily adapted to accept the quantization tables
(QTY andQTC) as inputs JPEGdiff (I,QTY ,QTC). This is achieved by omitting the scaling
by the JPEG quality.

We noticed that existing approaches just focus on finding “useful” differentiable surrogates
of the rounding function used for quantization; however, other discretizations and bounds
are not modeled. These operations include the clipping as well as the discretization of the
quantization table, the discretization of the quantization table scaling, and the bounding
of the output/coded image. We present differentiable approximations for modeling all five
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Figure 4.1. The JPEG differentiable encoding-decoding pipeline. We follow the standard JPEG
coding pipeline and extend all differentiable operations with their naive continuous generalization.
Non-differentiable operations are replaced with a differentiable surrogate. Since no information is
lost (identity mapping) during the lossless encoding/decoding we can neglect these coding steps
in our differentiable JPEG approach.

operations. Note for operations not described (e.g., DCT), we use their naive continuous
generalization. Since the gradient is not affected by the lossless encoding/decoding (cf.
Fig. 2.1), we follow existing approaches and neglect these steps.

4.1.1. Differentiable JPEG surrogate

Differentiable quantization. For approximating the quantization operation, which uses
the rounding function, we utilize the polynomial approximation

⌊x⌉+ (x− ⌊x⌉)3 (4.2)

by Shin et al. [33]. While other approximations exist (e.g., sigmoid function), we later
show that this design choice leads to superior performance over other approximations.

Differentiable QT scale floor. Non-differentiable standard JPEG computes the quantiza-
tion table scaling s(q) based on the JPEG quality with integer arithmetic (cf. Eq. (2.3)).
This is equivalent to computing s with float precision and applying the floor function.
To model this operation in a differentiable manner, we introduce a differentiable floor
approach. Note the original scaling approach (cf. Eq. (2.3)) is used, not the approach by
Shin et al. [33].

Our differentiable floor function makes use of the relation between the rounding and floor
function. We can express the floor function as a shifted version of the rounding function
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⌊x− 0.5⌉ = ⌊x⌋. Based on this property, we can use the polynomial rounding approach to
approximate the floor function by

⌊x− 0.5⌉+ (x− 0.5− ⌊x− 0.5⌉)3. (4.3)

We later validate this design choice against other approximations.

Differentiable QT floor. Since the quantization table is included in every JPEG file, the
JPEG standard requires the QT to include integer values. The standard (non-diff.) JPEG
implementation ensures this by using integer arithmetic. This is equivalent to applying the
floor function to QT after scaling. To ensure gradient propagation, we apply the proposed
floor approximation to the scale QT.

Differentiable QT clipping. Based on the JPEG standard [17], the quantization table
is bounded to the integer range {1, 2, . . . , 255}8×8. Utilizing low JPEG qualities (strong
compression) can lead to values outside of this range, even when utilizing the standard
QT. To ensure values approximately within this range, we propose a differentiable (soft)
clipping operation clip.

clip(x)

⎧⎪⎨⎪⎩
x ifx ∈ [bmin, bmax]

bmin + γ (x− bmin) ifx < bmin
bmax + γ (x− bmax) ifx > bmax

, γ ∈ (0, 1]. (4.4)

This soft approximation ensures a non-zero gradient of x when outside of the range
[bmin, bmax]. We set the scale parameter γ to 10−3.

Differentiable output clipping. Similar to the input image, the output image is bounded
to the pixel range of {0, 1, . . . , 255}. Depending on the image content and the applied
JPEG quality, values outside of this range can occur. To approximately adhere to this
range, we also apply the proposed differentiable clipping to the output/coded image.

4.1.2. Differentiable JPEG coding with STE

Instead of differentiably approximating all discretizations and bounds both in the forward
and backward pass, we can also take advantage of the STE technique. In our STE-based
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differentiable JPEG approach, we utilize the true rounding, floor, and clipping functions in
the forward pass. However, instead of using a constant gradient of one, as done by standard
STE, we employ the gradient of the proposed approximations during backpropagation.
This approach leads to a reduced error of the forward function since the true function and
not an approximation is used. We later show that our STE approach can be beneficial in
certain settings. We also show that using the gradient of the proposed approximations is
more effective than standard STE.

4.2. Differentiable JPEG File Size Modeling

Original image Encoding (lossy)
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Quantization

Surrogate

JPEG quality
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Figure 4.2. Differentiable JPEG file size pipeline. We utilize the differentiable JPEG coding
encoder (cf. Sec. 4.1) to approximate the lossy encoding. Based on the output of the diff. lossy
encoding we learn a differentiable JPEG file size model (in blue ■■) regressing the JPEG file size.

We aim to build a differentiable estimator of the JPEG file size. While there are differ-
entiable upper bounds for estimating the file size of entropy coding available, we learn
a differentiable JPEG file size model regressing the file size of the JPEG byte code (cf.
Fig. 4.2). This JPEG file size model makes use of our differentiable JPEG (lossy) encoder
and models the compression of run-length encoding (RLE) and Huffman encoding. In
particular, the file size model takes in the quantized DCT features of the differentiable
(lossy) encoder and predicts the file size. Note this is, in particular, a challenging task
since the file size depends both on the image content and the utilized JPEG parameters
(JPEG quality and quantization tables). For instance, an entirely black image in a vastly
smaller file size than a natural image, both encoded with the same coding parameters.

4.2.1. Differentiable JPEG file size model

We view the prediction of the JPEG file size based on the quantized DCT features. In
particular, the JPEG file size model takes in the patch-wise (luma and chroma) features as
a sequence of tokens and regresses the file size (cf. Fig. 4.3). To cope with high-resolution
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images we utilize a XCiT-like model (cf. Fig. 4.3) for this regression task [16]. As the
number of tokens can vastly increase as resolution increases using a standard transformer
can be infeasible [16], [84]. Cross-Covariance Attention [16] (XCA) solves the quadratic
memory complexity during training the standard transformer by building a per channel
attention matrix instead of a per token one [16].

Our differentiable JPEG file size model is composed of four XCiT blocks [16] followed
by two class attention blocks [85]. The full architecture is shown in Fig. 4.3. The
differentiable JPEG file size model takes in the quantized DCT features of both the luma
and chroma channels. Before feeding the tokens into the first XCiT block we contacted
sinusoidal positional encodings and linearly embed each token. All tokens are processed
by the four XCiT blocks. For making our file size prediction we draw inspiration from the
Class Attention approach [85]. We utilize two Class Attention blocks processing both the
quantized DCT tokens and a learnable regression token. After the two Class Attention
blocks, we extract the transformed regression token and utilize a prediction head (linear
layer & Softplus activation [86]) to predict the file size of the encoded JPEG file.
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Figure 4.3. Differentiable JPEG file size model architecture. Our JPEG file size model is
composed of four XCiT blocks [16] (in yellow ■■), two Class Attention blocks [85] (in green ■■)
and a prediction head (in purple ■■) for regressing the file size from a learnable regression token
(in blue ■■). For the sake of similarity we omit the incorporation of positional encodings and the
linear input mapping.

The XCiT block (cf. Fig. 4.4) processes a sequence of N tokens T ∈ RN×D with an embed-
ding dimension D. Our XCiT block is composed of two Layer Normalization operations [87],
a two-layer feed-forward network (with GELU activation [88]), and a XCA layer. The
XCA follows the standard transformer by utilizing linear input projections Q = WQT ,
K = WKT , and V = WV T . However, instead of performing attention over the token
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dimension, XCA performs attention over the embedding dimension D by

XC-Attention (Q,K,V ) = V Softmax
(︂
K̂

⊺
Q̂
)︂
. (4.5)

Note that K̂ and Q̂ denote the normalized query and key matrix. XCA utilizes the
Euclidean norm to normalize the key and query matrix. Again similar to the standard
transformer a linear output projection is utilized. Intuitively, the XC-Attention operation
can be interpreted as a dynamic 1 × 1 convolution, where the convolutional weight is
constructed dynamically based on the given input features. Similar to the standard
transformer XC-Attention also utilizes multiple attention heads to enhance expressiveness.
This yields an operation linear in memory and computational complexity w.r.t. the number
of input tokens. For reference, the standard attention formulation can be viewed as a
dynamic linear layer, leading to a memory (only during training [89]) and computational
quadratic complexity w.r.t. the number of input tokens.

LayerNorm

XCA
+

LayerNorm

FFNN

+

Figure 4.4. Modified XCiT building block. Our XCiT-based building block is composed of two
Layer Normalizations in purple ■■, a XCA layer in red ■■, and a channel-wise feed forward neural
network (FFNN) in green ■■.

Note that our differentiable JPEG file size model can be easily integrated into our differ-
entiable JPEG coding surrogate. This, subsequently, requires only a single forward pass
through the differentiable (lossy) encoding.

4.2.2. Differentiable JPEG file size training

We are interested the our differentiable JPEG file size model learns to regress the JPEG
file but also provides accurate gradient approximations. In particular, we formulate the
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JPEG file size mapping as a black box function

JPEGfs = sizeof (JPEGe (I, q)) = f, q ∈ {1, 2, . . . , 99}
I ∈ {1, . . . , 255}3×H×W, f ∈ N+,

(4.6)

with JPEGe denoting the JPEG encoding and sizeof representing the operation of querying
the file size (in bytes) from the JPEG binary file. Similar, to the differentiable JPEG coding
approach (cf., Sec. 4.1) we can generalize this function to arbitrary quantization tables
(sizeof (JPEGe (I,QTY ,QTC)) = f).

To learn a low-variance gradient estimator of Eq. (4.6) we make use of the control variates
theory. In particular, our JPEG file size model can become a low-variance gradient estimator
of the JPEG file size mapping if (1) the error between the output of the differentiable JPEG
file size model and the true function is minimized and (2) the two output distributions
are maximizing the correlation coefficient ρ [90]. Both requirements can be enforced
during training.

To minimize the error we utilize a MARE loss defined as

LMARE =
1

n

B∑︂
i=1

⃓⃓⃓
fi − f̂ i

⃓⃓⃓
|fi|

. (4.7)

Where f̂ i denotes the (indexed) batched prediction of the file size and fi represents the
(indexed) batched true file size. B is the utilized batch size. The relative error is utilized
to equally weight the different file sizes, independent of their magnitude. While it’s
difficult to learn a neural network over multiple orders of magnitude we regress the file
size in log10-space. For maximizing the correlation coefficient ρ we can use a correlation
coefficient loss [91]

Lρ =

∑︁B
k=1 (fk − E[f ])

(︂
f̂k − E

[︂
f̂
]︂)︂

√︂∑︁B
k=1 (fk − E[f ])2

√︃∑︁B
k=1

(︂
f̂k − E

[︂
f̂
]︂)︂2 .

Note this loss function requires a batch size B strictly larger than one. During training
we minimize a linear combination of both loss functions Lfs = LMARE + λρLρ. λρ ∈ R+

denotes a positive scalar factor applied to the correlation coefficient loss.

We pre-train and validate our differentiable JPEG model on the respective downstream
datasets (cf. Sec. 5.1) by randomly sampling quantization tables from U(1, 255) and
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minimizing Lfs. To adapt to the quantization tables predicted by our control network, we
fine tune the differentiable JPEG file size model in a lazy fashion during the end-to-end
coded control training (cf. Algorithm 1). We perform lazy training, i.e. updating the
differentiable JPEG file size model only every n-th training step, since training requires a
forward pass through Eq. (4.6) which is comparably slow since JPEG coding (w/ custom
quantization tables) is performed on the CPU with Pillow [92].

4.3. Deep Image Codec Control

We aim to learn a lightweight control network (cf. Fig. 4.5) predicting JPEG codec param-
eters (i.e., the quantization tables) solving the constrained optimization problem

max
(QTY ,QTC)

M(DNN(JPEG(I,C(I, f))))

s.t. f̃ ≤ f.
(4.8)

Where I denotes the image to be coded, f the target file size, f̃ the actual file size of the
encoded image, and JPEG the JPEG encoding-decoding mapping. The main objective
is the maximization of a downstream metric M (e.g., ACC) based on the prediction of a
downstream deep neural network DNN (e.g., ResNet-50). The optimization problem is
constrained by the target file size f . In practice we want the actual file size to be close
to the target file size. We consider the JPEG quantization tables QTY ∈ [1, 255]8×8 and
QTC ∈ [1, 255]8×8 as the predicted codec parameters of our control network C. Note
using custom quantization tables does not break the standardizations of JPEG.

In simple words, we want to learn a control network, consuming both the image to be
coded and a target file size, to predict codec parameters (quantization tables). These
codec parameters should maximize the downstream performance of a deep vision model
while leading to a file size within the target file size. Intuitively, we want to learn a control
network that is able to solve the constrained optimization problem (cf. Eq. (4.8)) in a
single forward pass. Our full Deep Image Codec Control pipeline is showcased in Fig. 4.5.

4.3.1. Reinforcement learning discussion

We want to approach the learning of the control network by leveraging standard end-
to-end learning. While learning the prediction of the quantization tables can also be
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Figure 4.5. Deep Image Codec Control pipeline. Given a file size condition and the image to
be coded, the control network (cf. Fig. 4.6) predicts the JPEG quantization tables. The image is
encoded using the predicted quantization tables before being transferred over a network or being
stored. The encoded image is decoded and analyzed by a deep vision model on the server-side. To
enable training the control network in an end-to-end fashion a differentiable surrogate model of
JPEG is used during training. Input image is taken from the REDS dataset [93].

approached by reinforcement learning [94], we argue that using reinforcement learning
is infeasible to approach this problem due to the large action space of the quantization
tables and the complex loss surface of the deep vision model. In particular, when only
limited compute is available, stabilizing reinforcement learning over a large range of file
size conditions and large datasets is infeasible.

4.3.2. End-to-end control training

While our constrained optimization problem (cf. Eq. (4.8)) is non-differentiable due to the
JPEG coding and the file size conditioning, we can utilize the proposed differentiable JPEG
coding approach (cf. Sec. 4.1) and our differentiable JPEG file size model (cf. Sec. 4.2)
to overcome this non-differentiability. In particular, we reformulate the constrained
optimization problem as a loss-based minimization problem

Lcontrol = λc Lc + λpLp + λr Lr + λQT LQT, (4.9)

where Lc is the file size condition loss, Lp the performance loss, Lr a file size regularizer,
and LQT regularizes the quantization tables. λc, λp, λr, and λQT are positive weighting
factors of the different loss components. Note that this general formulation is inspired by
the recent work of Reich et al. [24].

Our codec control loss Lcontrol can be seen as a soft and continuous approximation of the
constrained optimization problem (cf. Eq. (4.8)). More specifically, our reformulation
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into a loss-based minimization problem (excluding regularizers) is equivalent to the
Lagrangian function (w/ L1 loss on file size condition) of our constrained optimization
problem. Intuitively, the file size condition loss Lc penalizes the control network if the
predicted codec parameters lead to exceeding the file size condition. Lp, the performance
loss, provides a learning signal w.r.t. the performance of the downstream deep vision
model. The file size regularizer Lr enforces that the generated file size is close to the
target file size. This is also beneficial for the downstream performance as we have shown
that a smaller file size (stronger compression) leads to a deterioration in downstream
performance (cf. Sec. 2.2). The quantization table regularizer LQT constrains the space of
possible solutions, leading to a more stable and faster convergence.

File size condition loss. For enforcing our file size conditioning, we employ a loss
between the predicted (differentiable) JPEG file size f̃ and the file size condition f

Lc = max(0, f̃ − f (1− δc)). (4.10)

This loss formulation can be seen as a one-sided L1 loss, penalizing if the file size condition
f is exceeded. δc is a zero or positive constant pushing f̃ below the file size condition f .
Note, due to the large numerical range of the file size condition we apply Lc in log10-space
to circumvent exploding gradients.

Performance loss. To ensure downstream performance is maximized we utilize a perfor-
mance loss minimizing a criterion w.r.t. the downstream performance. The performance
loss is dependent on the utilized downstream task. In the case of image classification, we
utilize a cross-entropy loss defined as

Lp = −
C∑︂

j=1

p̃j log p̂j , (4.11)

where p̃ denotes the argmax thresholded one-hot classification over the classes C obtained
on the original (raw) image. We also refer to p̃ as the pseudo label. p̂ represents the
softmax prediction obtained on the coded image.

For the downstream task of semantic segmentation, we utilize the multi-class focal loss [95]
defined as

Lp =
1

HW

H,W∑︂
i=1, l=1

C∑︂
j=1

−α (1− P̂j,i,l)
γP̃j,i,l log P̂j,i,l. (4.12)
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P ∈ 0, 1C×H×W denotes the thresholded pseudo semantic segmentation label obtained
on the original (non-coded) image and P̂ ∈ [0, 1]C×H×W indicates the softmax semantic
segmentation on the coded image over the semantic classes C. H and W denote the spatial
dimensions. α denotes a scalar weighting factor and γ the focusing parameter. We set
both to the default values 0.5 and 2, respectively. We utilize the focal loss over a standard
cross-entropy loss to down-weight well-classified pixels as, especially, for a high target file
size the semantic segmentation prediction is relatively close to the pseudo label.

In the case of object detection (w/ DETR), we compute the performance loss both on the
object classifications and the bounding box predictions. In particular, we compute

Lp =
N∑︂

i=1

[︂
−

C∑︂
j=1

P̃ i,j log P̂ i,j⏞ ⏟⏟ ⏞
Loc

+β 1argmax P̃ i ̸=∅

⃓⃓⃓⃓⃓⃓
B̃i − B̂i

⃓⃓⃓⃓⃓⃓
1⏞ ⏟⏟ ⏞

Lbox

]︂
, (4.13)

where Loc is the object classification loss which computes the cross-entropy between the
thresholded object classification pseudo label P̃ ∈ [0, 1]N×C obtained on the original image
and the object classification P̂ ∈ [0, 1]N×C on the coded image. Note that N denotes the
object classification predictions of DETR and C represents the semantic classes. Lbox is
the bounding box loss enforcing that the bounding box prediction on the original image
B̃ ∈ RN×4 (pseudo label) and the predictions on the coded image are matching B̂ ∈ RN×4.
Note we only compute the absolute error between bounding boxes if not the no object
class ∅ is predicted by P̃ , this is denoted by 1argmax P̃ i ̸=∅. β is a positive scalar value
weighting the bounding box loss. We do not match predictions with the pseudo label, as
the original DETR training does since we want to precisely match the prediction obtained
on the original image. Note, that using a different task than the presented ones might
require adapting the performance loss Lp to the respective downstream task.

File size regularizer. To enforce the control network to predict quantization tables
leading to file size close but below the target file size, we utilize a file size regularizer.
Our file size regularizer is defined as

Lr =
⃓⃓⃓
min(0, f̃ − f (1− δr))

⃓⃓⃓
, (4.14)

where f̃ again denotes the predicted (differentiable) JPEG file size and f the file size
condition. δr is used to not push the file size above the file size condition. In general,
we set δr such that δr ≥ δc. Similar to the file size loss Lc, we also compute the file size
regularizer Lr in log10-space to compensate for the large numerical range.
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Quantization table regularizer. The space of possible quantization tables optimizing our
constrained optimization problem (cf. Eq. (4.8)) is enormous. Hence, end-to-end training
is unstable especially when a small batch size is used. To constrain the space of possible
quantization table solutions we regularize the quantization table prediction. In particular,
we constrain the average standard deviation of the predicted quantization tables by

LQT =

⃓⃓⃓⃓
⃓ 1B
(︄ B∑︂

i=1

Std(QTY,i)

)︄
− ζQT

⃓⃓⃓⃓
⃓+
⃓⃓⃓⃓
⃓ 1B
(︄ B∑︂

i=1

Std(QTC,i)

)︄
− ζQT

⃓⃓⃓⃓
⃓, (4.15)

where ζQT denotes the target standard deviation and B the batch size. We refer to Luo
et al. [47] for finding a suitable standard deviation target. In particular, Luo et al. [47]
proposed static but optimized quantization tables for deep vision models, we utilize these
quantization tables to determine ζQT.

Training procedure. We train the control network and the differentiable JPGE file size
model in an alternating fashion. In particular, we train the control network and for every
n-th step we train the differentiable JPEG file size model in a lazy fashion. The whole
training procedure is showcased in Algorithm 1. Note we only use our differentiable JPEG
approach during training. For validation we utilize the Pillow JPEG implementation with
support for custom quantization tables [92].

Bootstrap training

The control network is required to learn a dynamic behavior over a wide range of different
file size conditions. This can lead to instability during the early stages of the training.
To compensate for this we bootstrap the control network on the optimized quantization
tables proposed by Luo et al. [47]. In particular, we sample a random JPEG quality value
to scale the optimized quantization tables. JPEG encoding is performed with the scale
quantization tables to obtain the true JPEG file size. The true JPEG file size is then fed
into the control network to obtain the quantization table prediction of the control network.
The predicted quantization tables are then supervised by an absolute error to match the
(scaled) optimized quantization tables. With this approach we provide a clear target for
the control network, subsequently stabilizing the control network training during the
start of the training. We also optimize the control network w.r.t. the control loss Lcontrol
(cf. Eq. (4.9)) in an alternating fashion.
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Algorithm 1 End-to-end image codec control training. PyTorch-like [96] pseudo code
of the proposed self-supervised image codec control training approach.
1 for image in data_loader:
2 # Sample a file size condition
3 fs_c = log_uniform(bw_min, bw_max)
4 # File size condition into log10-space
5 fs_c_log = log10(fs_c)
6 # Forward pass control network
7 qt_y, qt_c = control_network(image, fs_c_log)
8 # Forward pass of surrogate model
9 image_jpeg, fs_p_log = diff_jpeg(image, qt_y, qt_c)

10 # Prediction on coded image
11 pred = downstream_model(image)
12 # Generate pseudo label with uncompressed clip
13 with no_grad():
14 pred_pseudo = downstream_model(clip)
15 label_pseudo = threshold_pred(label_pseudo)
16 # Compute control loss
17 loss_control = lambda_c * loss_c(fs_p_log, fs_c_log) \
18 + lambda_p * loss_p(pred, label_pseudo) \
19 + lambda_r * regularizer_fs(fs_p_log, fs_c_log) \
20 + lambda_qt * regularizer_qt(qt_y, qt_c, target_std)
21 # Compute backward pass and perform optimization
22 loss_control.backward()
23 optimizer_control_network.step()
24 # Next: Make lazy JPEG file size model training step

Note that during preliminary testing we occasionally observed a divergence of the end-
to-end control training when not using bootstrapping. When using bootstrapping no
divergence has been observed.

4.3.3. Connections to knowledge distillation and XAI approaches

While we propose our self-supervised training approach in light of controlling JPEG, our
training approach can also be interpreted under the lens of knowledge distillation [97].
We aim to learn quantization tables w.r.t. both downstream performance and a file size
condition. To this end, we take gradient-based feedback from the downstream deep vision
model. This can also be seen as an approach of knowledge distillation, as we want to
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extract from the downstream model which frequencies are important to preserve w.r.t.
downstream performance. By taking gradient feedback from the downstream deep vision
model we distill knowledge from the downstream model to the control network.

We can further draw connections to explainable AI [15] (XAI) approaches. Given an
image or video, compute vision XAI methods typically want to infer pixel or region-wise
attribution maps explaining the importance of features for a downstream prediction
(e.g., image classification) [19], [22], [98]. Methods like Grad-CAM [20], expected
gradients [99], or integrated gradients [19], [22] extract gradient-based information from
a deep vision model to infer interpretable explanations within the image space. Similarly,
we want to inform our control network about the importance of specific features in the
DCT space w.r.t. a downstream prediction. However, different from XAI approaches we
do not use gradient-based information during inference but we want to train the control
network to understand the feature importance of unseen images. Additionally, instead of
predicting pixel or region-wise importance maps we want to estimate feature importance
in the frequency space (DCT space) in the form of JPEG quantization tables.

4.3.4. Control network

Our control network consumes both the image to be coded as well as the file size condi-
tion and predicts the quantization tables (QTY & QTC , codec parameters). We design
our control network with the requirement of achieving a very lightweight architecture
applicable also in constrained resource environments (e.g., phones or edge devices). In
particular, our control network is composed of a standard backbone and a conditional
prediction head (cf. Fig. 4.6). As the backbone, we employ a very lightweight ConvNeXt
model in the atto configuration, pre-trained on ImageNet-1k [53], [100]. The conditional
prediction head is composed of three conditional residual blocks, consuming both the
latent features from the backbone, DCT statistics of the input image as well as the file size
condition, and predicting the codec parameters. To ensure a correct spatial dimension
(matching the quantization table size) we downsample the spatial dimension of the back-
bone features to a spatial resolution of 8× 8 After the final conditional residual block, we
use a linear mapping followed by a sigmoid activation. We scale the output by 255 to scale
the prediction to the value range of the quantization tables (the value range is [1, 255]).
The whole control network architecture is depicted in Fig. 4.6.

As most CNNs (including ConvNeXt [100]) do not adhere to the Nyquist Shannon The-
orem [101] features obtained from a CNN backbone might not capture all frequency
components of a given input image [102], [103]. To still inform the prediction head about
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Figure 4.6. Control network architecture. Visualization of the control networks architecture.
The control network consumes the image to be coded I and the target file size f as a condition and
predicts the optimal JPEG quantization tables (QTY & QTC). We utilize a ConvNeXt (atto) [53],
[100] (pre-trained on ImageNet-1k) to extract image features (in green ■■). Three conditional
residual blocks (in light blue■■) are used to incorporate the file size condition (conditional prediction
head) and predict the quantization tables. We feed both the features of the ConvNeXt backbone
and DCT statistics into the conditional prediction head.

all present frequency components we concatenate DCT statistics of the input image to the
backbone features. In particular, we compute the channel-wise first and second-order
statistics (mean and variance) of the patch-wise DCT features from the input image in the
YCbCr color space. We concatenate the channel-wise statistics with the backbone features
before feeding both to the conditional prediction head.

The conditional residual block used by the conditional prediction head is showcased in
Fig. 4.7. By utilizing Conditional Batch Normalization [7] (CBN) the file size condition
(in log10-space) is incorporated into the prediction. Inspired by self-supervised learning
approaches, we utilize Batch Normalization [6] (BN) in the CBN layer to counteract a
collapse of the predicted quantization tables to a single prediction [104], [105]. During
preliminary experiments, we observe a more stable training with BN than using, for
instance, Group Normalization [10] (GN).
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Conv. 3× 3

CBNf

Conv. 3× 3

CBNf

+

Figure 4.7. Conditional residual building block. Visualization of the conditional residual building
block used in the conditional prediction head of our control network. Two convolutional layer (in
yellow ■■), two non-linear activations, a standard BN layer (in purple ■■), and a CBN layer (in light
purple ■■) are used.
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5. Experiments

This chapter provides empirical results of the proposed methodologies. First, we describe
the dataset and evaluation metrics used. Then we introduce the utilized baseline followed
by implementation details. Finally, we provide both results for our differentiable JPEF
approach, our differentiable JPEG file size model, and our Deep Image Codec Control.

5.1. Datasets

Set14 [50] ImageNet-1k [51]

Cityscapes [55] COCO 2017 [54]

Figure 5.1. Datasets overview. Samples from the four diverse dataset used in our experiments.

This section describes the different datasets used for training and validating the proposed
approaches. On a high level, for our differentiable JPEG coding experiments, we use
ImageNet-1k [51] and the Set14 dataset [50]. For pre-training our differentiable JPEG file
size model, we use video sequences of the Cityscapes dataset [55]. For our Deep Image
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Codec Control experiments, dependent on the downstream task, we use the Cityscapes
dataset [55], the ImageNet-1k dataset [51], or the COCO 2017 dataset [54]. Samples of
the utilized dataset are depicted in Fig. 5.1.

5.1.1. Differentiable JPEG coding experiments

For our adversarial attack experiments, we utilize 5k randomly chosen images of the
ImageNet-1k validation set (ILSVRC 2012) [51]. For all other experiments, we use the
Set14 dataset [50], composed of 14 RGB images ranging from natural to document-like
images.

5.1.2. Differentiable JPEG file size experiments

For pre-training our differentiable JPEG file size model we use the images of the unlabeled
sequences of Cityscapes including high-resolution (1024 × 2048) 30-frame video clips
(∼ 10k frames total) with 2967 training and 498 validation clips. We validate the pre-
trained model on the respective validation frames. We pre-train different differentiable
JPEG file size models with the respective downstream resolution (e.g., 224× 224 for image
classification). Note fine-tuning during Deep Image Codec Control training is performed
on the respective downstream dataset.

5.1.3. Deep Image Codec Control experiments

Depending on the downstream task we use different datasets for training our Deep Image
Codec Control. For image classification we utilize the ImageNet-1k [51] dataset, composed
of 1.3M training and 50k images. We utilize a resolution of 224 × 224. For the task of
semantic segmentation, we utilize the Cityscapes dataset [55] at a square resolution of
768×768, achieved via clipping. Cityscapes offers both a labeled set as well as an unlabeled
set composed of short video sequences. For training, we utilize the 3k unlabeled video
sequences of Cityscape as our approach does not require annotations. For validation, we
use the 500 validation images from the labeled set. For object detection experiments we
use the COCO 2017 dataset [54]. COCO is composed of 118k training and 5k validation
samples at a resolution of 640× 480, achieved via resampling.

38



5.1.4. Dataset discussion

All utilized datasets use some degree of compression. While there are approaches to
remove compression artifacts (e.g., JPEG coding artifacts), these approaches typically
require knowledge of the applied compression [106]. Due to the use of various sources
(e.g., images from the internet) it is typically unknown which compression is applied to
individual images. To compensate for this, we estimate the working range of JPEG on the
respective dataset. Based on the rate-distortion curves, shown in Fig. 5.2 we determine the
JPEG working range for each dataset used for our Deep Image Codec Control experiments.
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Figure 5.2. JPEG rate-distortion curves. JPEG rate-distortion curves for three different datasets:
Cityscapes [55], COCO 2017 [54], and ImageNet-1k [51]. We utilize the respective validation set.
Note that file sizes between datasets differ substantially due to the different image resolutions.
We show the mean and two standard deviations.

5.2. Validation

5.2.1. Differentiable JPEG coding experiments

Evaluating a differentiable JPEG implementation comes in two different flavors. First,
evaluating the performance of the forward mapping and second, the validation of gradients
obtained from the differentiable JPEG approach. While evaluating the forward mapping
is well-defined, validating the effectiveness of the backward function is non-trivial.
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Forward function evaluation. We evaluate the performance of the forward mapping by
measuring the similarity between the coded image obtained by the differentiable approach
and the coded image of the reference implementation. We use the SSIM [107], the PSNR
for evaluation, the mean squared error (MSE), and the mean absolute error (MAE) (L1).

Backward function evaluation. We aim to showcase the “usefulness” of gradients ob-
tained by the backward function. Taking inspiration from Shin et al. [33] we utilize
adversarial attack experiments to showcase the quality and “usefulness” of gradients in
the context of gradient-based optimization. Adversarial examples are crafted through
the mapping C (JPEGdiff (I, q)) = p, composed of an ImageNet classifier C (e.g., ResNet-
50 [52]) and a differentiable JPEG function JPEGdiff, conditioned on a given JPEG quality
q. We aim to craft an adversarial image Iadv, from the original image I, s.t. the prediction
p ∈ [0, 1]c over c classes is deteriorated. Note, while crafting the adversarial example using
a differentiable JPEG approach we validate the effectiveness of the adversarial example by
using the non-differentiable JPEG reference implementation.

We consider two adversarial attack techniques, the Fast Gradient Sign Method [9]
(FGSM) [9] and the Iterative Fast Gradient Sign Method [11], [12] (IFGSM) [11], [12].
FGSM in the non-targeted setting crafts an adversarial example by

Iadv = I+ ϵ sign(∆I[L(y, C (JPEGdiff (I, q)))]), (5.1)

where L is the cross-entropy loss and y the true class label. IFGSM performs FGSM
for N iterations and uses ϵ

N as the update size. Both FGSM and IFGSM ensure that
∥Iadv − I∥∞ ≤ ϵ.

We argue that in order to generate an effective adversarial example, JPEGdiff needs to
produce “useful” gradients. The more effective the adversarial images are in deteriorating
the prediction (measured by accuracy), the more “useful” the gradients of JPEGdiff become.
Note, since C consumes the JPEG-coded image the resulting gradient is also partly
dependent on the forward performance of JPEGdiff.

Vanishing gradient evaluation. While it is not possible to directly measure the “useful-
ness” of gradients, we can evaluate the gradients’ ability to adhere to desired properties
in gradient-based optimization. For local and global minima, it is desirable that gradients
vanish. While the exact position of local and global minima w.r.t. to a differentiable JPEG
approach is not known, we can measure the gradient magnitude at positions that are
desired to be local or global minima. Optimally, the gradient at these positions vanishes.
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In particular, we compute the L1 loss between the differentiable and the reference JPEG
L1(JPEGdiff (I, q) , JPEGr (I, q)). Subsequently, estimate the gradient norms w.r.t.to both
the JPEG quality ∥∆qL1∥ and the (internal) standard QT ∥∆QTY,C

L1∥ (luma and chroma
table). We average the gradient norms over both the different integer JPEG quality ranges
and the dataset D.

5.2.2. Differentiable JPEG file size experiments

We validate our differentiable JPEG file size model on how well the actual file size can be
regressed. In particular, we measure the MARE. We perform validation after pre-training
and sample quantization tables randomly from a uniform distribution U(1, 255). Note,
that similar to the differentiable JPEG coding evaluation, validating the backward pass of
our differentiable JPEG file size model is not defined. However, due to the control variates
theory we can assume that our differentiable JPEG file size model becomes a low-variance
gradient estimator if the file size is regressed accurately [90], [108]. The Deep Image
Codec Control also provides a cue if our differentiable JPEG file size model provides an
accurate gradient estimate. Since no accurate gradients are generated our Deep Image
Codec Control could not learn to predict parameters w.r.t. target file size.

5.2.3. Deep Image Codec Control experiments

We validate our Deep Image Codec Control for ten different file size conditions within the
JPEG working range (cf. Fig. 2.3). For each file size condition, we perform one validation
pass over the respective validation set. We report both a task-specific performance metric
(e.g., ACC for image classification) as well as the absolute relative error w.r.t. the file size
condition. The performance metric is dependent on the utilized downstream task. Note
for validation we quantize the predicted quantization tables of the control network and
use the standard non-differentiable Pillow [92] JPEG implementation.

Image classification To validate the impact of our Deep Image Codec Control on the
task of image classification we measure both the top-1 and top-5 accuracy. Since we target
to preserve performance with reference to the prediction on the original (non-coded)
image, we utilize the (hard) classification prediction obtained on the original image as a
pseudo label for validation.
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Semantic segmentation For the task of semantic segmentation, we follow standard
practice and measure the mIoU (mean Intersection-over-Union) [55]–[58]. To obtain the
mIoU, first, the per-class IoU is computed and averaged over all classes. We also report
the pixel-wise ACC.

Object detection To measure the object detection performance we use the mAP (mean
Average Precision) metric. We compute both the global mAP as well as the mAP for an
IoU threshold of 50% (mAP50) and 75% (mAP75).

5.3. Baselines

5.3.1. Differentiable JPEG coding

We compare against the surrogate-based approaches by Xing et al. [34] and Shin et al. [33].
We also compare against the STE-based approach of Xie et al. [65]. Since Xie et al.are
not modeling the JPEG quality, we extend the approach with the JPEG quality mapping
of Xing et al. [34]. Both the approach of Shin et al.and Xie et al.offer no code, we have
reimplemented both in PyTorch [96]. For the approach of Xing et al. [34], we use the
official code. We noticed a bug in the official code (wrong quantization table transposition).
We run experiments with the debug code. Note due to the very limited control (JPEG
quality can not be set) and stochasticity, we do not consider noise-based approaches.

5.3.2. Image Codec Control

As we are not aware of any existing baseline solving our constrained optimization problem
(cf. Eq. (4.8)), we compare our Deep Image Codec Control against standard JPEG. Standard
JPEG, however, does not have an integrated file size control. To this end, we employ a
binary search over the JPEG quality to adhere to the file size conditioning. In particular,
we perform a binary search with the goal of finding a JPEG quality within −10% tolerance
of the file size conditioning. Note this approach requires in the worst case ⌈99⌉ encoding
operations. If no matching JPEG quality can be found, the JPEG quality closest to the file
size condition is used. As standard JPEG is optimized to minimize image distortion w.r.t.
human quality assessment, we also utilize the optimized quantization tables for deep
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vision models, proposed by Luo et al. [47]. We will refer to the JPEG approach optimized
for deep vision models as JPEG++.

5.4. Implementation Details

5.4.1. Differentiable JPEG coding

For all experiments, we utilize the OpenCV [46] JPEG implementation as a reference.
We used JPEG coding with chroma downsampling (downsampling the chroma channels
by a factor of 2). We utilize Kornia [109] for computing the SSIM. The utilized SSIM
patch size is 11. Adversarial attack experiments are conducted using a ResNet-50 from
torchvision [110] supervised trained on ImageNet-1k. For IFGSM experiments, we utilize
N = 10 iterations. The step parameter ϵ is varied between experiments. After each attack
iteration, we hard clip the image to the valid pixel range of [0, 255].

5.4.2. Differentiable JPEG file size

For training our differentiable JPEG file size model we randomly sample quantization
tables from a uniform distribution U(1, 255) and regress the resulting file size. We utilize
the Pillow [92] JPEG implementation since Pillow offers support for custom quantization
tables. We pre-train a differentiable JPEG file size model for each downstream dataset. In
particular, we perform 30k training step during pre-training and utilize a cosine learning
rate schedule [111] (without annealing and restarts) with an initial learning rate of 10−4

and no weight-decay. For optimization we use the Adam optimizer [112]. To ensure a
stable training we clip gradients with a norm larger than 1. Due to the different dataset
resolution we utilize a batch size of 64 for ImageNet-1k, 32 for the COCO dataset, and
16 for Cityscapes. Note the differentiable JPEG file size models are fine tuned during
end-to-end codec control training.

5.4.3. Deep Image Codec Control

We implement our Deep Image Codec Control using PyTorch [96], PyTorch Lightning [113],
and Kornia [109]. For JPEG coding we utilize the Pillow [92] JPEG implementation as
Pillow offers support for custom quantization tables. We utilize chroma downsampling in
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JPEG coding. We train our control network for 20k steps using the Adam optimizer [112].
For the first 1.5k steps, we bootstrap the control network. The initial learning rate of the
control network’s conditional prediction head is set to 10−4. For the ConvNeXt backbone,
pre-trained on ImageNet-1k [53], we utilize an initial learning rate of 10−4. The initial
learning rate of the pre-trained JPEG file size model is set to 10−4. We decay all learning
rates using a cosine learning rate schedule without annealing and restarts [111]. We clip
gradients with a norm larger than 0.1. For the task of semantic segmentation, we utilize a
trained DeepLabV3 [26] model with ResNet-18 [52] backbone and a batch size of 28. For
object detection, we use a trained DETR [8] model with ResNet-50 [52] backbone and a
batch size of 64. Image classification is performed using a ResNet-152 [52] or ViT-S [14]
with a batch size of 384. The loss weights are set to: λc = 30, λp = 0.8, λr = 0.2, and
λQT = 0.01. To increase training efficiency, we utilize half-precision training. The target
standard deviation ζQT is set to 12. δc and δr are set to −0.02 and 0.02, respectively.
Depending on the downstream task, we use different file size ranges. To determine the
file size range we use the presented rate-distortion curves (cf. Fig. 5.2). For the task of
semantic segmentation (Cityscapes dataset), we use a file size range of 20kB to 100kB.
For object detection (COCO dataset), we employ a file size range of 10kB to 100kB. For
the downstream task of image classification, a range of 5kB to 50kB is used. We sam-
ple a random file size condition during training from a uniform distribution, using the
aforementioned file size ranges. Since training can become unstable when a mini-batch
does not capture the full range of file sizes, we chunk the uniform distribution into bins,
corresponding to the used batch size. From each bin, a random file size is sampled. This
ensures that each mini-batch does capture the full file size range, subsequently, stabilizing
training with a low batch size. The differentiable file size model is trained in a lazy fashion
every 12-th training step. Lazy training is used to ensure faster training, as each file size
model training step requires JPEG encoding a mini-batch of images.

5.4.4. Computational setup

We train all models on a single GPU setup. For training the differentiable file size model
we utilize a single NVIDIA A6000 GPU with 48GB of VRAM. For training our Deep Image
Codec Control on the downstream task of semantic segmentation we follow the same
computational setup. For the downstream tasks of image classification and object detection
we use a single NVIDIA A100 GPU with 80GB of VRAM.
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5.5. Results: Differentiable JPEG Coding

This section presents results of our differentiable JPEG coding approach. We report both
the forward and backward performance. Further, we present thorough ablations of the
proposed novel components.

5.5.1. Forward function results

We evaluate the ability to resemble the non-differentiable reference JPEG implemen-
tation of existing approaches against our differentiable JPEG approach (w/ STE). Our
approach is able to resemble the non-differentiable JPEG implementation best. In par-
ticular, our approach outperforms all existing approaches over the whole JPEG quality
range (cf. Fig. 5.3). Especially, for strong compression strengths (low JPEG quality values)
our proposed differentiable JPEG approach leads to better approximations. For weaker
compression strengths (higher JPEG quality values) the performance gap between differ-
entiable methods becomes smaller, but still, our approach leads to superior performance.
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Figure 5.3. Forward function performance. Performance of approximating the reference JPEG
implementation (OpenCV [46]) for different JPEG qualities. Mean and one standard deviation
shown.

For small JPEG qualities (strong compression), we observe a significant disparity in
performance between differentiable JPEG approaches. While our approach is still able to
approximate standard non-differentiable JPEG well (SSIM > 0.97), all existing approaches
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fail and produce coded images vastly different from the reference implementation (SSIM
< 0.97). These results are quantitatively analyzed in Fig. 5.4 and Tab. 5.1.
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Figure 5.4. Forward function performance for strong compression. Performance of approxi-
mating the reference JPEG implementation (OpenCV [46]) for low JPEG qualities. Mean and one
standard deviation shown.

SSIM ↑ PSNR ↑

Configuration q range → 1-99 1-10 11-99 1-99 1-10 11-99

Xing et al. [34] 0.961 0.833 0.977 38.10 29.45 39.19
Xie et al. [65] 0.972 0.884 0.983 40.02 31.63 41.07

A Shin et al. [33] 0.969 0.888 0.979 38.71 31.07 39.66

B + diff. QT clipping 0.978 0.966 0.979 39.16 35.10 39.67
C + diff. QT floor 0.983 0.971 0.985 41.03 35.95 41.66
D + diff. QT scale floor 0.984 0.971 0.986 41.08 35.96 41.72

E + diff. output clipping 0.991 0.987 0.992 42.60 38.28 43.14(our differentiable JPEG)

F + STE (cf. Sec. 4.1.2) 0.993 0.993 0.992 43.49 41.14 43.78(our differentiable STE JPEG)

Table 5.1. Forward function performance summary and ablation. To ablate our approach, we
gradually add our novel components to Shin et al. [33]. We also report the performance of other
differentiable approaches. STE-based approaches marked in gray ■■.
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Forward function ablation results. To understand what makes our differentiable JPEG
implementation effective in resembling the reference implementation, we conduct an abla-
tion study (cf. Tab. 5.1 and Fig. 5.5). We gradually add our introduced components (config.
A to F). All our novel components improve performance while our full configuration (config.
E) performs best among non-STE and STE approaches. Using STE (config. F) further
improves forward performance, leading to coded images perceptually indistinguishable
from the reference implementation.

Fig. 5.5 showcases the effect of all introduced components for each (integer) JPEG quality.
We observe that especially differentially clipping the coded output image (config. E)
improves performance and, in particular, leads to strong results for small JPEG qualities.
Interestingly, differentially clipping the quantization tables only leads to improvements
for small JPEG quality values (strong compression). For larger JPEG quality values we
observe no performance improvements by clipping the quantization tables. Clipping the
output (coded) image in a differentiable manner leads to the valid pixel range leads to
the most significant performance improvements over the whole JPEG quality range.
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Figure 5.5. Ablation study graph. JPEG quality-wise forward function performance for different
configurations (cf. Tab. 5.1). Standard deviation is not shown for the sake of clarity.

Using STE (config. F) leads to a superior forward function performance over our non-STE
approach (config. E, cf. Fig. 5.5). As showcased in Fig. 5.6, our differentiable STE JPEG
approach outperforms our differentiable JPEG approach w/o STE especially for low JPEG
qualities. For high JPEG quality values (weak compression), our differentiable JPEG
approach w/ and w/o STE lead to very similar results.
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Figure 5.6. Forward function performance with STE. Performance of approximating the reference
JPEG implementation (OpenCV [46]) for different JPEG qualties. Mean and one SD shown.

5.5.2. Backward function results

Adversarial attack results. We craft adversarial examples to showcase the “usefulness”
of gradients derived by differentiable JPEG approaches. When using FGSM with ϵ = 3,
our differentiable JPEG w/o STE consistently leads to superior results over our approach
w/ STE and other differentiable approaches (cf. Tab. 5.2 (top)). When increasing ϵ to
9, our differentiable JPEG w/ STE scores slightly better than our approach w/o STE (cf.
Tab. 5.2 (bottom)).

When using IFGSM to craft adversarial examples, the results are consistently in favor of
our differentiable JPEG approach w/o STE (cf. Tab. 5.3). Interestingly, the approach by
Xing et al. leads to predominately poor adversarial examples. We explain this result by
the use of the Fourier rounding approximation which is highly non-monotonic.

Our approach w/o STE leads to particularly strong attack results for low JPEG qualities
compared to other approaches (cf. Tab. 5.3). Our approaches (w/ and w/o STE) lead
to strong adversarial images for a JPEG quality of 1, 2, and 3, while Shin et al. suffer to
produce effective adversarial images (cf. Fig. 5.7). In general, our approach w/ STE leads
to a stronger forward performance, while a better backward performance is achieved w/o
STE.
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Top-1 acc ↓ Top-5 acc ↓

Approach q range → 1-99 1-10 11-99 1-99 1-10 11-99

No attack 66.83 33.36 71.01 85.91 53.10 90.01

FSGM with ϵ = 3

Xing et al. [34] 53.92 26.00 57.42 77.90 45.65 81.93
Xie et al. [65] 41.48 20.07 44.15 66.53 38.52 70.03
Shin et al. [33] 36.62 16.40 39.15 60.19 32.38 63.67
Our diff. JPEG 36.51 15.80 39.10 59.92 30.89 63.54
Our diff. STE JPEG 36.95 16.35 39.53 60.79 32.55 64.32

FSGM with ϵ = 9

Xing et al. [34] 51.25 27.64 54.20 75.24 47.41 78.72
Xie et al. [65] 38.29 18.15 40.81 61.89 35.38 65.21
Shin et al. [33] 35.01 15.04 37.51 57.40 29.70 60.86
Our diff. JPEG 35.00 14.65 37.55 57.28 28.97 60.82
Our diff. STE JPEG 34.77 14.88 37.25 57.24 29.92 60.65

Table 5.2. FGSM attack results summary. Summarized top-1 and top-5 accuracy after FGSM
attack for different JPEG quality ranges. We report results for both ϵ = 3 and ϵ = 9. As a reference,
we also report accuracies for no attack performed.
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Figure 5.7. IFGSM attack results. Top-1 accuracy after IFGSM attack with our approach (w/ and
w/o STE) vs. Shin et al. [33].
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Top-1 acc ↓ Top-5 acc ↓

Approach q range → 1-99 1-10 11-99 1-99 1-10 11-99

IFSGM with ϵ = 3

Xing et al. [34] 43.44 24.42 45.82 72.52 45.55 75.90
Xie et al. [65] 25.30 14.72 26.63 46.55 31.47 48.43
Shin et al. [33] 15.11 8.98 15.88 27.21 19.99 28.11
Our diff. JPEG 14.39 7.97 15.19 25.79 17.53 26.83
Our diff. STE JPEG 15.00 8.35 15.83 27.07 18.73 28.12

IFSGM with ϵ = 9

Xing et al. [34] 39.59 24.99 41.41 67.73 45.41 70.52
Xie et al. [65] 15.03 8.70 15.82 27.34 19.21 28.35
Shin et al. [33] 6.89 4.99 7.12 12.64 10.47 12.91
Our diff. JPEG 6.54 4.09 6.85 11.96 8.32 12.41
Our diff. STE JPEG 7.14 4.14 7.51 13.11 8.89 13.64

Table 5.3. IFGSM attack results summary. Summarized top-1 and top-5 accuracy results after
IFGSM attack for multiple JPEG quality ranges and different differentiable JPEG approaches. We
report accuracy results for both ϵ = 3 and ϵ = 9.

Vanishing gradient experiment. Both our differentiable JPEG w/ and w/o STE lead
to lower gradient norms at the desired minima (cf. Tab. 5.4). The approach by Xing et
al. leads to particularly large gradient norms. We suspect again the choice of rounding
function approximation (Fourier-based) to be a major contributor to these results.

EQ,D[∥∆qL1∥] EQ,D[∥∆QTY,C
L1∥]

Approach q range → 1-99 1-10 11-99 1-99 1-10 11-99

Xing et al. [34] 1.254 7.271 0.502 – – –
Xie et al. [65] 0.955 4.617 0.492 0.913 1.041 0.896
Shin et al. [33] 0.587 4.172 0.139 0.213 0.474 0.181
Our diff. JPEG 0.022 0.068 0.017 0.043 0.030 0.044
Our diff. STE JPEG 0.014 0.042 0.010 0.060 0.162 0.048

Table 5.4. Vanishing gradient results. Average gradient norms at desired global minima. Gradient
norms are averaged over the integer JPEG quality range Q and the Set14 [50] dataset D.
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5.5.3. Additional ablation results

Which rounding/floor approximation to use? In Tab. 5.5, we analyze the effect of differ-
ent differentiable rounding and floor function approximations on the forward performance.
Both the linear and the polynomial differentiable approximation perform best, with a
slight advantage for the polynomial approach.

SSIM ↑ PSNR ↑

Function q range → 1-99 1-10 11-99 1-99 1-10 11-99

Fourier x −
∑︁10

k=1
(−1)k+1

kπ sin(2πkx) 0.984 0.956 0.987 41.28 35.66 41.98
Linear ⌊x⌉ + 0.1 (x − ⌊x⌉) 0.990 0.987 0.991 42.37 38.70 42.83
Polynomial ⌊x⌉ + (x − ⌊x⌉)3 0.991 0.987 0.992 42.60 38.28 43.14
Sigmoid σ(60(x − 1

2 + ⌊x⌋)) + ⌊x⌋ 0.990 0.980 0.992 42.29 36.88 42.96
Tanh 1

2 tanh
(︁
5
(︁
x − 1

2 − ⌊x⌉
)︁)︁

+ 1
2 0.972 0.918 0.978 38.51 31.15 39.42

Table 5.5. Rounding/floor ablation (forward function). Performance of approximating the
reference OpenCV [46] JPEG. For all experiments, our diff. JPEG w/o STE was used; only the
differentiable rounding/floor approx. is varied. Eq. describe the rounding approximations; for the
floor approx., we shift x by −0.5.

As in terms of backward function performance, the polynomial approximation also leads
to the best adversarial examples (cf. Tab. 5.6). This suggests gradients derived from the
polynomial approximation are more “useful” than from other approximations. While
leading to a fair forward performance (cf. Tab. 5.5), the Fourier approximation leads to
poor attack results, thus also yields worse gradients. This result aligns with the attack
results by Xing et al. (cf. Tab. 5.2 and Tab. 5.3) also employing the Fourier approximation.

Top-1 acc ↓ Top-5 acc ↓

Function q range → 1-99 1-10 11-99 1-99 1-10 11-99

Fourier 39.53 20.16 41.95 68.98 40.81 72.50
Linear 25.69 22.41 26.10 46.52 42.84 46.98
Polynomial 14.39 7.97 15.19 25.79 17.53 26.83
Sigmoid 20.28 6.34 22.02 36.79 14.44 39.59
Tanh 22.52 15.20 23.43 41.80 32.79 42.92

Table 5.6. Rounding/floor ablation (IFGSM). IFGSM attack results for various differentiable
rounding/floor approximations. IFGSM w/ ϵ = 3 used. For all experiments; our diff. JPEG was
used, only the rounding/floor approximation was varied.
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When considering both forward and backward performance (cf. Tab. 5.5 and Tab. 5.6), the
best choice for approximating the rounding and floor function is the polynomial approach.
These results might be explained by the fact the polynomial approximation strikes a vital
trade-off between approximation error (w.r.t. the rounding/floor function), monotonicity,
and gradient magnitude.

Which STE backward approximation to use? Standard STE assumes a constant gradient
in the backward pass, while our STE approach uses a closer approximation of the true
derivative. When using our proposed surrogate-based STE, we observe substantial gains
in adversarial attack performance over standard STE (cf. Tab. 5.7), indicating that our
approach leads to more “useful” gradients.

Top-1 acc ↓ Top-5 acc ↓

Backw. approach q range → 1-99 1-10 11-99 1-99 1-10 11-99

Constant grad. (standard STE) 25.30 21.62 25.76 45.38 41.37 45.88
Surrogate (ours) 7.14 4.14 7.51 13.11 8.89 13.64

Table 5.7. STE backward ablation (IFGSM). IFGSM attack results for different STE backward
approaches. IFGSM w/ ϵ = 3 used. For all experiments, our differentiable JPEG w/ STE was used;
only the STE backward approach was varied.
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5.6. Results: Differentiable JPEG File Size Modeling

Here we validate the performance of our differentiable JPEG file size model. We generate
quantization tables by our trained Deep Image Codec Control for 10 different file size
conditions, if not stated differently. We feed the quantization tables and the current image
into our differentiable JPEG file size model and regress the JPEG file size. We measure
the MARE or error between the prediction of our differentiable JPEG file size model and
the JPEG file size generated by standard non-differentiable JPEG.

5.6.1. Results on Cityscapes

Fig. 5.8 presents differentiable file size model results on the Cityscapes dataset [55]. For
a low target file size, our differentiable JPEG file size model leads to a MARE of about
0.025. In case of higher target file sizes the performance of our differentiable JPEG file
size model is slightly reduced. However, the error does not exceed a MARE of 0.05 for
large target file sizes. In general, the differentiable JPEG file size model performance on
Cityscapes leads to accurate differentiable file size estimates over the full file size range,
facilitating the learning of our Deep Image Codec Control.
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Figure 5.8. Differentiable JPEG file size model results (Cityscapes). MARE of our differentiable
JPEF file size model on Cityscapes (in blue ■■) using our Deep Image Codec Control to predict
quantization tables for the respective file size conditions.

5.6.2. Results on COCO

On the COCO dataset, we observe a similar performance as on the Cityscapes dataset.
Fig. 5.9 visualizes the obtained results on COCO. As on Cityscapes, our differentiable
JPEG file size model on COCO leads to stronger results for low target file sizes and slightly
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deteriorates in performance for higher target file sizes. Still, our differentiable JPEG file
size model only leads to a MARE of about 0.06 in the worst case.

10k 20k 35k 50k 70k 100k

0.025
0.05

0.075
0.1

Target file size in B

M
AR

E
↓

Figure 5.9. Differentiable JPEG file size model results (COCO). MARE of our differentiable JPEF
file size model on COCO (in blue ■■) using our Deep Image Codec Control to predict quantization
tables for the respective file size conditions.

5.6.3. Results on ImageNet

Fig. 5.10 presents differentiable file size results obtained on ImageNet. We observe a
similar trend as on Cityscapes and COCO that our differentiable file size model performs
better for small target file sizes. However, the performance deterioration for larger
target file sizes is more severe than on Cityscapes and ImageNet. This deterioration in
performance might be explained by the variability of the ImageNet dataset compared to
Cityscapes. As, in particular, for larger target file sizes the variance of the generated file
size increases (cf. Fig. 3.1) our differentiable JPEF file size model might suffer to generate
a more accurate file size predictions on ImageNet. While we train for the same number of
iterations on all datasets, scaling up the ImageNet training might lead to more accurate
differentiable file size results.
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Figure 5.10. Differentiable JPEG file size model results (ImageNet). MARE of our differentiable
JPEF file size model on ImageNet (in blue ■■) using our Deep Image Codec Control to predict
quantization tables for the respective file size conditions.
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5.6.4. Error distribution

In Fig. 5.11, we report the error distribution of our differentiable JPEG file size model.
We visualize the error histogram of our differentiable JPEG file size model using the
Cityscapes dataset and randomly generated quantization tables. The error distribution
entails a symmetric shape, this is beneficial for our Deep Image Codec Control as the
differentiable file size model does not introduce a significant systematic error w.r.t. to
JPEG file size.
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Figure 5.11. Differentiable file size model error distribution. We report the error distribution (in
blue ■■) of our differentiable file size model on Cityscapes [55]. We sample random quantization
tables and measure the error to the true JPEG file size. Gaussian fit of the error distribution plotted
in red ■■.
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5.7. Results: Deep Image Codec Control

This section provides validation results of our Deep Image Codec Control for three different
computer vision tasks: semantic segmentation, object detection, and image classification.
We also provide results when transferring a Deep Image Codec Control to a different
downstream deep vision model. Finally, we also provide insides of failed experiments.

5.7.1. Semantic segmentation results

In Fig. 5.12 we show results of our Deep Image Codec Control in preserving the semantic
segmentation downstream performance of a DeepLabV3 network with ResNet-50 backbone.
Our Deep Image Codec Control is able to adapt to different target file sizes. When
measuring the pixel-wise ACC our Deep Image Codec Control better preserves semantic
segmentation performance for low target file sizes (cf. Fig. 5.12 right). When measuring
the mIoU our Deep Image Codec Control falls short (cf. Fig. 5.12 left). We suspect that our
control network might cheat and predict quantization tables optimizing for more present
classes. As the mIoU metric weights pixels non-uniformly, a shortcut prediction by the
control network might explain the disparity between both metrics.
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Figure 5.12. Deep Image Codec Control semantic segmentation results. Validation results of
our Deep Image Codec Control and baselines for different target file sizes. A DeepLabV3 model w/
ResNet-18 backbone is utilized as the downstream deep vision model.

In Fig. 5.13, we report the ability to meet a dynamic target file size. Our Deep Image
Codec Control is able to predict quantization tables leading to a file size close to the target
file size. For small target file sizes, we outperform both baselines. For larger target file
sizes (above 50kB) our Deep Image Codec Control performs on par with the baselines.
We suspect that this behavior is induced by our differentiable JPEG file size model. As
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our differentiable JPEG file size model performs slightly weaker for larger target file sizes
this error could potentially also have a negative impact on the Deep Image Codec Control
performance for the respective target file size range.
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Figure 5.13. Deep Image Codec Control file size condition results (semantic segmentation).
Validation results of our Deep Image Codec Control and baselines of meeting a dynamic file size
condition. We report the MARE of the actual file size to the target file size.

5.7.2. Object detection results

For the task of object detection, we showcase results in Fig. 5.14. Similarly, to the task of
semantic segmentation, our Deep Image Codec Control adapts to different target file sizes,
however, falls short of the baselines in terms of preserving downstream performance.
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Figure 5.14. Deep Image Codec Control object detection results. Validation results of our Deep
Image Codec Control and baselines for different target file sizes. A DETR model w/ ResNet-50
backbone is utilized as the downstream deep vision model.

While falling short in preserving downstream performance, our Deep Image Codec Control
follows accurately a dynamic file size condition. We provide file size condition results
for the task of object detection on COCO in Fig. 5.15. Our Deep Image Codec Control
leads to a file size closer to the target file size as both baselines. Similar to the results on
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semantic segmentation our Deep Image Codec Control tends to more accurately follow
the target file size for low file sizes.
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Figure 5.15. Deep Image Codec Control file size condition results (object detection). Validation
results of our Deep Image Codec Control and baselines of meeting a dynamic file size condition.
We report the MARE of the actual file size to the target file size.

5.7.3. Image classification results

For the task of image classification, we report results for two different downstream models,
ViT-S and ResNet-152. The downstream results for different file size conditions are
reported in Fig. 5.16 and Fig. 5.17, respectively. While we meet the performance of our
JPEG baseline for a file size of 12kB, we especially fall short for larger file size conditions
(> 12kB). While we bootstrap our control network on the quantization tables predicted
by JPEG++ our Deep Image Codec Control diverges from this solution. This might be
caused by the strong quantization table regularization we impose.
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Figure 5.16. Deep Image Codec Control object classification results. Validation results of our
Deep Image Codec Control and baselines for different target file sizes. A ViT-S image classification
model is utilized as the downstream deep vision model.

58



Target file size in B
5k 10k 20k 35k 50k

80

90

100

Ac
cu

ra
cy

(%
)↑

Top-1

5k 10k 20k 35k 50k
92
94
96
98

100

Ac
cu

ra
cy

(%
)↑

Top-5

Deep Image Codec Control
JPEG++ [47]
JPEG [17]

Figure 5.17. Deep Image Codec Control object classification results. Validation results of
our Deep Image Codec Control and baselines for different target file sizes. A ResNet-152 image
classification model is utilized as the downstream deep vision model.

In Fig. 5.18 and Fig. 5.19 we visualize the dynamic file size condition results for the
respective downstream model (ViT-S and ResNet-15). For a target file size below 30kB
we achieve a strong performance and accurately meet the utilized target file size. For
larger file size conditions our Deep Image Codec Control struggles to target the target file
size. This is potentially caused by the error introduced by our differentiable JPEG file size
model (cf. Fig. 5.10). Interestingly, both baselines also struggle to closely approach the
correct target file size. This is potently caused by the fact that the JPEG quality offers a
too coarse grain control for high file size conditions (cf. Fig. 5.2).
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Figure 5.18. Deep Image Codec Control file size condition results (image classification w/
ViT-S). Validation results of our Deep Image Codec Control and baselines of meeting a dynamic
file size condition. We report the MARE of the actual file size to the target file size.
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Figure 5.19. Deep Image Codec Control file size condition results (image classification w/
ResNet-152). Validation results of our Deep Image Codec Control and baselines of meeting a
dynamic file size condition. We report the MARE of the actual file size to the target file size.

5.7.4. Transfer results (image classification)

We also tested the transferability of Deep Image Codec Controls between different down-
stream models. In particular, we tested a Deep Image Codec Control, trained using a ViT-S
downstream model, to preserve the performance of a ResNet-152 image classification
model. These results are depicted in Fig. 5.20. Compared to the Deep Image Codec Con-
trol directly trained with a ResNet-152 model performance of the transferred Deep Image
Codec Control is reduced by about 1.5% in top-1 ACC. Interestingly, this performance gap
becomes narrower for target file sizes above 20kB. These findings align with the work of
Chen et al. [31]. They show when using a deep video codec, trained utilizing a ResNet-50,
to preserve the performance of a VGG-19 network [114] downstream deteriorates over a
deep video codec directly trained on the respective downstream model.
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Figure 5.20. Deep Image Codec Control downstream model transfer results. We transfer a
Deep Image Codec Control trained using a ViT-S model to preserve the downstream performance
of a different downstream model (ResNet-152) during inference. For reference, we also visualize
the performance of a Deep Image Codec Control trained on a ResNet-152 model.
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5.7.5. Failed Deep Image Codec Control experiments

This subsection provides results when quantization table regularization (LQT ) is not
considered during training our Deep Image Codec Control. Bootstrap training is also
omitted. We observe that training becomes unmanageably unstable. This behavior is
showcased in Fig. 5.21 in which we visualize the control networks loss curve (Lc w/o
LQT ). While the loss before 10k tends to recover after severe spikes training becomes
more and more unstable as the training progresses. For reference, when considering our
quantization table regularizer the training loss converges below a value of 0.2.
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Figure 5.21. Training loss w/o quantization table regularization for the downstream task of
semantic segmentation. Visualization of the control networks training loss Lc for 20k training
iterations. For visualization purposes, we show an exponential moving average of the loss over-
played with the raw loss values. No bootstrap training phase was used.

When visualizing only the (unscaled) performance loss we observe an even more unstable
behavior w.r.t. the downstream performance (cf. Fig. 5.22). This demonstrates that the
control network is not able to preserve downstream performance in the unregularized
setting (not considering LQT ).
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Figure 5.22. Training performance loss w/o quantization table regularization for the down-
stream task of semantic segmentation. Visualization of the control networks training perfor-
mance loss Lp for 20k training steps. For visualization purposes, we show an exponential moving
average of the loss overplayed with the raw loss values. No bootstrap training phase was used.

We also performed preliminary experiments by replacing the proposed quantization
table regularizer LQT with a smoothness regularizer. In particular, we experimented
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with regularizing the first or second-order image gradient of the quantization tables,
imposing the control network to predict similar quantitation values for neighboring
frequency components. Note this regularization is similar to the smoothness terms used
in unsupervised optical flow prediction [115]. However, both first and second-order
smoothness could not help stabilize the training process.
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6. Discussion & Future Work

This chapter discusses the presented methodology. We also present possible approaches
to overcome existing limitations. Finally, we also pose and discuss additional research
questions beyond the scope of this thesis which might be relevant for future research.

6.1. Discussion

Training a content and file size adaptive Deep Image Codec Control is feasible, however,
requires strong regularization. The control network is required to both explore possi-
ble codec parameters w.r.t. a dynamic file size condition and downstream deep vision
performance. This is, in particular, challenging as multiple codec parameters might op-
timize our control objective (cf. Eq. (4.8)). Optimizing over a complex loss surface of
the downstream deep vision model introduces additional complexity. When using no
regularization training is highly unstable and does not converge to a strong solution (cf.
Sec. 5.7.5). However, regularizing the prediction of the control network constrains the
space of possible solutions. This potentially leads to suboptimal predictions by the control
network. Thus, finding the correct regularization strategy is significant for learning a
strong Deep Image Codec Control and preserving downstream vision performance. A good
regularization strategy is required to stabilize the end-to-end training while not omitting
strong solutions from the solution space. We argue that while stabilizing the training our
proposed regularization might offer a too strong constraint for significantly outperforming
existing approaches. To this end, we suggest possible techniques to overcome the current
limitations of our Deep Image Codec Control in the following section.
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6.2. Overcoming Existing Limitations

Here we present possible approaches to overcome the current limitations of our proposed
Deep Image Codec Control.

Curriculum learning. Choi et al. [63] demonstrated that learning the dynamic prediction
of quantization tables for a fixed target file size outperforms existing approaches. Starting
training with a single target file size and progressively enlarging the range of file sizes
might offer a more stable training process. This curriculum learning [116]–[118] approach
would constrain the control network to first learn codec parameters relevant to preserve
downstream performance and to meet a single target file size. By progressively enlarging
the range of file sizes the control network can transfer the learned knowledge to a
wide range of dynamic file size conditions. By first constraining the solution space and
progressively enlarging the solution space this approach might help stabilizing our end-to-
end codec control training. Note this approach can also be seen as a kind of regularization
strategy [116].

Attribution map regularization. As the gradient-based feedback from the downstream
deep vision model is potentially very sparse utilizing a regularizer offering a more dense
gradient feedback w.r.t. downstream performance might improve learning [20], [99]. In
particular, enforcing a similarity between an attribution map obtained on the original
image and an attribution map from the coded image might offer a potentially interesting
approach. By regularizing the attribution maps the control network would be forced to
preserve relevant features, subsequently preserving downstream performance. Addition-
ally, the gradient signal from this regularizer might be potentially more dense than just
gradient-based feedback from the downstream model. This regularization approach would
also not impose a vast constraint on the quantization table predictions. As attribution
maps often require multiple backward passes through a downstream model developing a
performant and general regularization approach might pose significant challenges [22].
Lazy regularization [119] might pose a potential avenue for efficiently regularizing the
control network using attribution maps.

Quantization table decomposition. Quantization tables often entail regularities [17],
[47], [80]. Predicting decomposed quantization tables, instead of a full rank matrix might
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ease learning. In particular, predicting two vectors per quantization table and building
the full quantization table by the outer product could potentially stabilize training. The
control network, thus, only needs to predict 16 quantization values instead of 8× 8. While
this approach constrains the space of possible quantization tables it might impose a bias
usefully for stabilizing and enhancing learning.

6.3. Future Work

This thesis focuses on showcasing the feasibility of training one Deep Image Codec Con-
trol for one specific downstream task and model. However, training a control for each
downstream task and model is not practical. To facilitate the widespread applicability
of a Deep Image Codec Control future work might consider the support for multiple
downstream models. Generalizing over multiple tasks might also pose an interesting
direction for future research. More specifically, prompt tuning the control network for
multiple downstream tasks as done by Chen et al. [31] might be an interesting avenue to
explore. As our control network explores the importance of features in frequency space
connecting this work with recent findings on how CNNs and ViTs perceive images might
offer potentially useful insides [120].
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7. Conclusion

Motivated by the fact that current deep vision models base their downstream predictions on
silent parts of frequencies of an image, this thesis presented a novel approach for optimizing
JPEG for deep vision models [19]–[22], [25]. As JPEG is developed to minimize image
distortion w.r.t. human quantity assessment and not w.r.t. deep vision performance this
thesis analyzes the impact of JPEG coding on downstream deep vision performance. We
performed experiments using JPEG-coded images on three common computer vision tasks:
image classification, object detection, and semantic segmentation and a variety of different
model architectures (e.g., ResNets, and ViTs). All models suffer from a vast deterioration
in downstream performance when utilizing JPEG-coded images during inference. For
strong compression, downstream deep vision performance almost completely collapses.

To approach the vast deterioration in downstream performance, we present an approach
to augment/control JPEG w.r.t. downstream deep vision performance. In particular, we
present a novel Deep Image Codec Control for JPEG. Our Deep Image Codec Control
aims to control JPEG such that downstream deep vision performance is preserved and a
dynamic file size condition is met. We also adhere to existing standardizations to facilitate
the possible widespread applicability of our approach.

As standard JPEG encoding-decoding is non-differentiable, the direct application of end-
to-end gradient-based learning is not feasible. To overcome this non-differentiability, this
thesis presents a novel differentiable JPEG approach. The proposed differentiable JPEG
approach supports gradient w.r.t. the input image, the JPEG quality, the quantization
tables, and the color conversion parameters. In contrast to the existing differentiable
JPEG approaches our approach is the first to accurately approximate JPEG over the full
compression range while providing gradient approximations effective for gradient-based
optimization.

While our differentiable JPEG coding approach allows the properation of gradient-based
feedback through the JPEG encoding-decoding, the file size of the JPEG encoded image is
not modeled. To this end, we also present a novel differentiable JPEG file size surrogate
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model. This enables the propagation of gradient-based feedback w.r.t. the JPEG file size.
Given an input image and JPEG quantization tables, our differentiable JPEG file size
model is able to accurately regress the resulting JPEG file size and provide effective
gradient-based feedback.

The proposed differentiable JPEG encoding-decoding approach paired with our differen-
tiable JPEG file size surrogate model enables us to formulate the learning of our Deep
Image Codec Control as an end-to-end learning problem. In particular, we present a novel
end-to-end self-supervised training formulation to learn our Deep Image Codec Control.
By utilizing pseudo labeling based on prediction obtained on the original (non-coded)
images our approach circumvents the use of human annotations. Our experiments on
three common computer vision tasks showcase that our Deep Image Codec Control is able
to adapt to different file size conditions during inference and can preserve downstream
performance. While mostly reaching an on-par performance to existing approaches, our
end-to-end learnable Deep Image Codec Control offers a novel and alternative approach
for optimizing standard image codecs for machine vision. We thoroughly discuss the
current limitations and difficulties of our Deep Image Codec Control and suggest multiple
potential improvements to be explored by future research.
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A. Appendix

Here we report additional observations and results of the proposed methodology.

A.1. Additional Differentiable JPEG Coding Results

(a) Original image (b) JPEG (OpenCV) (c) Diff. JPEG (Shin et al.) (d) Diff. JPEG (ours)

Figure A.1. Differentiable JPEG coding results (I) Utilized JPEG quality is 1.
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(a) Original image (b) JPEG (OpenCV) (c) JPEG (Shin et al.) (d) JPEG (ours)

Figure A.2. Differentiable JPEG coding results (II) Utilized JPEG quality is 3.
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(a) Original image (b) JPEG (OpenCV) (c) JPEG (Shin et al.) (d) JPEG (ours)

Figure A.3. Differentiable JPEG coding results (III) Utilized JPEG quality is 50.
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(a) Original image (b) JPEG (OpenCV) (c) JPEG (Shin et al.) (d) JPEG (ours)

Figure A.4. Differentiable JPEG coding results (IV) Utilized JPEG quality is 99.
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A.2. Differentiable JPEG File Size Preliminary Results

During preliminary we tested different approaches to incorporate positional encodings to
the differentiable JPEG file size model. We experimented with both adding the sinusoidal
positional encodings and concatenating the positional encodings to the quantized DCT
features. Interestingly, we observed that concatenating the positional encodings leads
to a way smoother and faster convergence. This was especially notable during the early
phase of the training as showcased in Fig. A.5. Note we also experimented with no
positional encodings at all. While this leads to a similarly fast initial convergence training
as concatenating the positional encodings but leads to a notably more unstable training
and weaker overall performance since the model lacks positional information.

100 200 300 400 5000
0.1
0.2
0.3
0.4
0.5

Training steps

M
AR
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↓

Add PE
Concat PE

Figure A.5. Add vs. concatenate positional encodings. Training MARE at the beginning of the
training. Concatenating the positional encodings (in green ■■) leads to a better initial convergence
than adding the positional encodings (in yellow ■■) to the quantized DCT features. We showcase
the exponential ruining average of the training MARE.
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