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Motivation
Introduction

Figure: Trapped yeast cell segmentation example, adapted from [Prangemeier et al., 2020a].

m Goal: Segment cells and traps with uncertainty
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Motivation
Introduction

Figure: Trapped yeast cell segmentation example, adapted from [Prangemeier et al., 2020a].

m Goal: Segment cells and traps with uncertainty
= For the sake of simplicity: semantic segmentation & aleatoric uncertainty
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m Bayes by Backprop [Blundell et al., 2015] m Deep Ensembles [Fort et al., 2019]
= Probabilistic Backpropagation m Stochastic Weight Averaging Gaussian
[Hernandez-Lobato and Adams, 2015] [Maddox et al., 2019]

= Monte Carlo Dropout
[Gal and Ghahramani, 2016]
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m Bayes by Backprop [Blundell et al., 2015] m Deep Ensembles [Fort et al., 2019]
= Probabilistic Backpropagation m Stochastic Weight Averaging Gaussian

[Hernandez-Lobato and Adams, 2015] [Maddox et al., 2019]
= Monte Carlo Dropout m Lightweight Probabilistic Deep Networks

[Gal and Ghahramani, 2016] [Gast and Roth, 2018]
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Deep Networks
Method

m Deep neural network definition (chain of nonlinear layers)
y=fo0)=f0 (F70 (.0 (x.60))) 1]
m Each activation is a deterministic point estimate

Figure: Deterministic
deep neural network.
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Lightweight Probabilistic Deep Networks [Gast and Roth, 2018]
Method

= Deep uncertainty propagation using assumed density filtering (ADF) C

o Assume input to be coruppted by white Gaussian noise

p(#) - TI (£ )

(=) [A]
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Figure: ADF-based
deep neural network.

March 14, 2022 | Department of Computer Science | Artificial Intelligence and Machine Learning Lab | Christoph Reich | 5



TECHNISCHE
UNIVERSITAT
DARMSTADT

Lightweight Probabilistic Deep Networks [Gast and Roth, 2018]
Method

= Deep uncertainty propagation using assumed density filtering (ADF) C

o Assume input to be coruppted by white Gaussian noise
p(z?) = HN (z*1%.07)

o Use ADF to fine a tractable approximation of the network activations @

!
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Figure: ADF-based
deep neural network.

March 14, 2022 | Department of Computer Science | Artificial Intelligence and Machine Learning Lab | Christoph Reich | 5



TECHNISCHE
UNIVERSITAT
DARMSTADT

Lightweight Probabilistic Deep Networks [Gast and Roth, 2018]
Method

= Deep uncertainty propagation using assumed density filtering (ADF) C

o Assume input to be coruppted by white Gaussian noise
p(z?) = HN (z*1%.07)

o Use ADF to fine a tractable approximation of the network activations @

!

p"") ~q(2"") = qz) [T a@")
&
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o Approximate subsequent activations by isotropic Gaussian
Figure: ADF-based

™) HN( (')Iu,('), ) s Vi) = (H(')J(')) deep neural network.

March 14, 2022 | Department of Computer Science | Artificial Intelligence and Machine Learning Lab | Christoph Reich | 5



TECHNISCHE
UNIVERSITAT
DARMSTADT

Lightweight Probabilistic Deep Networks [Gast and Roth, 2018]
Method

= Deep uncertainty propagation using assumed density filtering (ADF) C

o Transform activation distribution of subsequent layers
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Figure: ADF-based
deep neural network.
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Lightweight Probabilistic Deep Networks [Gast and Roth, 2018]
Method

= Deep uncertainty propagation using assumed density filtering (ADF) C

o Transform activation distribution of subsequent layers

i—1
(") = p?|2") [T a(z?)

j=0

o ADF performs incremental updates of variational approximation by solving @

argminKL (p(z*") [ 4(z*"))
&

q(z(O:l) )

Figure: ADF-based
deep neural network.
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Lightweight Probabilistic Deep Networks [Gast and Roth, 2018]
Method

= Deep uncertainty propagation using assumed density filtering (ADF) C

o Transform activation distribution of subsequent layers

i—1

p") =p(z"12"") [T a(z")

j=0

o ADF performs incremental updates of variational approximation by solving @

argminKL (p(z*") [ 4(z*"))
&

a(z(O:i) )

o Solve var. approx. by moment matching between p(z(%?) and g(z(*").
Figure: ADF-based

deep neural network.
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Lightweight Probabilistic Deep Networks [Gast and Roth, 2018]
Method

= Deep uncertainty propagation using assumed density filtering (ADF)

o Convert a network layer z) = £ (z0=1: 9) into an uncertainty propagation

layer by simply matching first and second-order central moments
uf) = Eq(z(ifl)) [f<i> (Z(i_l); 9)]

og) = Vq(z(i—l)) [fm (z(i_l); 0)] @

Figure: ADF-based
deep neural network.
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Lightweight Probabilistic Deep Networks [Gast and Roth, 2018]
Method

= Deep uncertainty propagation using assumed density filtering (ADF)

o Convert a network layer z) = £ (z0=1: 9) into an uncertainty propagation

layer by simply matching first and second-order central moments
uf) = Eq(zaﬂ)) [f<i> (Z(i_l); 9)]

(i _ () ((Hi=1).
o4 = [ (E700) ) (Al
o Closed form solution available for the most common layers: Linear, @ C

Convolution, Pooling, Upsampling (Trans. Conv.), Leaky ReLU
[Gast and Roth, 2018].
Figure: ADF-based
deep neural network.
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Lightweight Probabilistic Deep Networks [Gast and Roth, 2018]
Method

= Deep uncertainty propagation using assumed density filtering (ADF)

o Convert a network layer z) = £ (z0=1: 9) into an uncertainty propagation

layer by simply matching first and second-order central moments
uf) = Eq(z(ifl)) [f<i> (Z(i_l); 9)]

(i _ () ((Hi=1).
o4 = [ (E700) ) (Al
o Closed form solution available for the most common layers: Linear, @ C

Convolution, Pooling, Upsampling (Trans. Conv.), Leaky ReLU
[Gast and Roth, 2018]. . ADF-based
m Further reading: original paper [Gast and Roth, 2018], [Murphy, 2012] & dfeu;ieural_n:fﬁork.

[Murphy, 2022]
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Lightweight Probabilistic Deep Networks [Gast and Roth, 2018]
Method

= The output of the ADF-based Lightweight Probabilistic Deep Neural C

Network in the semantic segmentation case is a parameterized Dirichlet
distribution for each pixel

P(:|2) = Dir(-| (st V), exlpiz,vz) = =

m = softmax(u,), Ss=c¢; + C2\/ﬂ @
J

Figure: ADF-based
deep neural network.

March 14, 2022 | Department of Computer Science | Artificial Intelligence and Machine Learning Lab | Christoph Reich | 8



TECHNISCHE
UNIVERSITAT
DARMSTADT

Lightweight Probabilistic Deep Networks [Gast and Roth, 2018]
Method

= The output of the ADF-based Lightweight Probabilistic Deep Neural C

Network in the semantic segmentation case is a parameterized Dirichlet
distribution for each pixel

P(:|2) = Dir(-| (st V), exlpiz,vz) = =

m = softmax(p,), § = C1 +Cz |y _ myy @ "
J
m | earning is performed by minimizing the conditional negative log-likelihood

Figure: ADF-based
deep neural network.
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Table: Numerical results on the trapped yeast cell dataset [Prangemeier et al., 2020b].
Model Approach Dice 1 loU 1
U-Net w/ BN [Ronneberger et al., 2015, Prangemeier et al., 2020b] Deterministic 0.9626 0.8839
U-Net [Ronneberger et al., 2015] ADF-based 0.9544 0.9033
DeeplLabV3+ [Chen et al., 2018] ADF-based 0.9492 0.8941

m Surprisingly, U-Net (ADF-based) slightly outperforms DeepLabV3+ (ADF-based).
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Experiments
Qualitative Results ADF-Based U-Net

I

Figure: Segmentation Figure: Misclassified

Figure: Mean uncertainty Figure: Background class

prediction overlay. pixels. over all classes. uncertainty.
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= Applied Lightweight Probabilistic Deep Neural Networks to the task of cell semantic

segmentation
= Lightweight Probabilistic Deep Neural Networks offer on par segmentation accuracy to the

deterministic counterpart while offering uncertainties
Code will be available here:

ChristophReich1996
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