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Figure: Trapped yeast cell segmentation example, adapted from [Prangemeier et al., 2020a].

Goal: Segment cells and traps with uncertainty

For the sake of simplicity: semantic segmentation & aleatoric uncertainty
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Bayesian Neural Networks Overview
Background

Bayes by Backprop [Blundell et al., 2015]
Probabilistic Backpropagation
[Hernández-Lobato and Adams, 2015]
Monte Carlo Dropout
[Gal and Ghahramani, 2016]

Deep Ensembles [Fort et al., 2019]
Stochastic Weight Averaging Gaussian
[Maddox et al., 2019]

Lightweight Probabilistic Deep Networks
[Gast and Roth, 2018]
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Deep Networks
Method

Deep neural network definition (chain of nonlinear layers)

y = f (x;θ) = f(l)
(
f(l−1)

(
. . . f(1)

(
x,θ(1)

)))
Each activation is a deterministic point estimate
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deep neural network.



Lightweight Probabilistic Deep Networks [Gast and Roth, 2018]
Method

Deep uncertainty propagation using assumed density filtering (ADF)
Assume input to be coruppted by white Gaussian noise

p
(
z(0)

)
=

∏
j

N
(
z(0)j | xj, σ2

n

)

Use ADF to fine a tractable approximation of the network activations

p(z(0:l)) ≈ q(z(0:l)) = q(z(0))
l∏

i=1

q(z(i))

Approximate subsequent activations by isotropic Gaussian

q(z(i)) =
∏
j

N
(
z(i)j |µ(i)

j , σ
(i)
j

)
, vz(i) =

(
µ(i),σ(i)

)
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Lightweight Probabilistic Deep Networks [Gast and Roth, 2018]
Method

Deep uncertainty propagation using assumed density filtering (ADF)
Transform activation distribution of subsequent layers

p̃(z(0:i)) = p(z(i)| z(i−1))

i−1∏
j=0

q(z(j))

ADF performs incremental updates of variational approximation by solving

argmin
q̃(z(0:i))

KL
(
p̃(z(0:i)) ‖ q̃(z(0:i))

)
Solve var. approx. by moment matching between p̃(z(0:i)) and q̃(z(0:i)).
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Lightweight Probabilistic Deep Networks [Gast and Roth, 2018]
Method

Deep uncertainty propagation using assumed density filtering (ADF)
Convert a network layer z(i) = f(i)

(
z(i−1);θ

)
into an uncertainty propagation

layer by simply matching first and second-order central moments

µ(i)
z = Eq(z(i−1))

[
f(i)

(
z(i−1);θ

)]
σ

(i)
z = Vq(z(i−1))

[
f(i)

(
z(i−1);θ

)]

Closed form solution available for the most common layers: Linear,
Convolution, Pooling, Upsampling (Trans. Conv.), Leaky ReLU
[Gast and Roth, 2018].

Further reading: original paper [Gast and Roth, 2018], [Murphy, 2012] &
[Murphy, 2022]
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Lightweight Probabilistic Deep Networks [Gast and Roth, 2018]
Method

The output of the ADF-based Lightweight Probabilistic Deep Neural
Network in the semantic segmentation case is a parameterized Dirichlet
distribution for each pixel

p(· | z) = Dir(· |α(µz, vz)), α(µz, vz) =
m
s

m = softmax(µz), s = c1 + c2
√∑

j

mjvj

Learning is performed by minimizing the conditional negative log-likelihood
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Experiments
Quantitative Results

Table: Numerical results on the trapped yeast cell dataset [Prangemeier et al., 2020b].

Model Approach Dice ↑ IoU ↑
U-Net w/ BN [Ronneberger et al., 2015, Prangemeier et al., 2020b] Deterministic 0.9626 0.8839
U-Net [Ronneberger et al., 2015] ADF-based 0.9544 0.9033
DeepLabV3+ [Chen et al., 2018] ADF-based 0.9492 0.8941

Surprisingly, U-Net (ADF-based) slightly outperforms DeepLabV3+ (ADF-based).
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Experiments
Qualitative Results ADF-Based U-Net

Figure: Segmentation
prediction overlay.

Figure: Misclassified
pixels.

Figure: Mean uncertainty
over all classes.

Figure: Background class
uncertainty.
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Conclusion

Applied Lightweight Probabilistic Deep Neural Networks to the task of cell semantic
segmentation
Lightweight Probabilistic Deep Neural Networks offer on par segmentation accuracy to the
deterministic counterpart while offering uncertainties

Code will be available here:

https://github.com/
ChristophReich1996
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