Differentiable JPEG: The Devil is in the Details

TECHNISCHE UNIVERSITÄT DARMSTADT

IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2024

Christoph Reich^{1,2, \ddagger}, Biplob Debnath², Deep Patel², and Srimat Chakradhar²

¹Technische Universität Darmstadt, Germany ²NEC Laboratories America Inc., USA

[‡]christoph.reich@bcs.tu-darmstadt.de

January 5, 2024 | TU Darmstadt | NEC Labs America | Christoph Reich | 1

Motivation

JPEG coding is ubiquitous!

Millions of devices are using JPEG coding

JPEG coding is the core of many real-world image processing pipelines

G. K. Wallace, "The JPEG still picture compression standard," *IEEE Trans. Consum. Electron.*, vol. 38, no. 1, pp. xviii–xxxiv, 1992
 G. Hudson *et al.*, "JPEG-1 standard 25 years: past, present, and future reasons for a success," *J. Electron. Imaging*, vol. 27, no. 4, pp. 040 901–1–040901–19, 2018

Figure: JPEG encoding-decoding pipeline.

f Standard JPEG coding is non-differentiable

f Standard JPEG coding is non-differentiable

Introduction

Figure: Rounding function.

 Gradient of rounding function is zero almost everywhere (or undefined)

Figure: Clipping function.

 Gradient of clipping function is zero for clipped values

Introduction

Figure: Rounding function.

 Gradient of rounding function is zero almost everywhere (or undefined)

Figure: Clipping function.

 Gradient of clipping function is zero for clipped values

Introduction

Figure: Rounding function.

 Gradient of rounding function is zero almost everywhere (or undefined)

 Gradient of clipping function is zero for clipped values

Introduction

Figure: Rounding function.

 Gradient of rounding function is zero almost everywhere (or undefined)

Figure: Clipping function.

 Gradient of clipping function is zero for clipped values

Introduction

Figure: Rounding function.

 Gradient of rounding function is zero almost everywhere (or undefined)

Figure: Clipping function.

- Gradient of clipping function is zero for clipped values
- Inhibits the application of gradient-based learning (e.g., neural network training)

Our Differentiable JPEG Approach

Existing Differentiable JPEG Approaches

Only model the DCT feature quantization step (rounding func.) in a differentiable setting.

We model all crucial discretization and bounds of standard JPEG [1] in a differentiable setting

- DCT feature quantization
- Quantization table scale flooring
- Quantization table flooring
- Quantization table clipping
- Output image clipping

[1] G. K. Wallace, "The JPEG still picture compression standard," IEEE Trans. Consum. Electron., vol. 38, no. 1, pp. xviii–xxxiv, 1992.

Our Differentiable JPEG Approach

Existing Differentiable JPEG Approaches

Only model the DCT feature quantization step (rounding func.) in a differentiable setting.

We model all crucial discretization and bounds of standard JPEG [1] in a differentiable setting

- DCT feature quantization
- Quantization table scale flooring
- Quantization table flooring
- Quantization table clipping
- Output image clipping

[1] G. K. Wallace, "The JPEG still picture compression standard," IEEE Trans. Consum. Electron., vol. 38, no. 1, pp. xviii–xxxiv, 1992

Our Differentiable JPEG Approach Method

NEC NEC Laboratories America

$$\overline{\mathsf{clip}}(x, b_{-}, b_{+}) = \begin{cases} x & \text{if } x \in [b_{-}, b_{+}] \\ b_{-} + \gamma (x - b_{-}) & \text{if } x < b_{-} \\ b_{+} + \gamma (x - b_{+}) & \text{if } x > b_{+} \end{cases}$$

Figure: Diff. rounding function approximation.

$$\overline{\lfloor x \rceil} = \lfloor x \rceil + (x - \lfloor x \rceil)^3$$

Our Differentiable JPEG Approach

Figure: Diff. rounding function approximation.

Figure: Diff. clipping function approximation.

$$\overline{\mathsf{clip}}(x, b_{-}, b_{+}) = \begin{cases} x & \text{if } x \in [b_{-}, b_{+}] \\ b_{-} + \gamma \left(x - b_{-}\right) & \text{if } x < b_{-} \\ b_{+} + \gamma \left(x - b_{+}\right) & \text{if } x > b_{+} \end{cases}$$

Our Differentiable STE JPEG Approach

Standard Straight-Through Estimation [3] assumes a constant gradient

$$\lfloor x \rceil_{\mathsf{STE}} = \begin{cases} \lfloor x \rceil & \text{forward pass} \\ 1 & \text{backward pass} \end{cases}$$

Our STE approach uses the gradient of the differentiable surrogate function

$$[x]_{\text{STE}} = \begin{cases} \lfloor x \rfloor & \text{forward pass} \\ \frac{d}{dx} \lfloor x \rfloor + (x - \lfloor x \rfloor)^3 \text{ backward pass} \end{cases}$$

[3] Y. Bengio et al., "Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation," arXiv:1308.3432, 2013

Our Differentiable STE JPEG Approach

Standard Straight-Through Estimation [3] assumes a constant gradient

$$\lfloor x \rceil_{\mathsf{STE}} = \begin{cases} \lfloor x \rceil & \text{forward pass} \\ 1 & \text{backward pass} \end{cases}$$

Our STE approach uses the gradient of the differentiable surrogate function

$$\lfloor x \rceil_{\mathsf{STE}} = \begin{cases} \lfloor x \rceil & \text{forward pass} \\ \frac{\mathrm{d}}{\mathrm{d}x} \lfloor x \rceil + (x - \lfloor x \rceil)^3 \text{ backward pass} \end{cases}$$

[3] Y. Bengio et al., "Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation," arXiv:1308.3432, 2013

Differentiable JPEG Results I

Results (Forward Function)

Figure: Performance of approximating the reference JPEG implementation for different JPEG qualities.

Our diff. JPEG approach consistently leads to a better forward performance

[4] X. Xie et al., "Bandwidth-Aware Adaptive Codec for DNN Inference Offloading in IoT," in ECCV, 2022, pp. 88–104

[5] R. Shin et al., "JPEG-resistant Adversarial Images," in NIPS Workshop, vol. 1, 2017, p. 8

[6] Y. Xing et al., "Invertible Image Signal Processing," in CVPR, 2021, pp. 6287–6296

Differentiable JPEG Results I

Results (Forward Function)

Figure: Performance of approximating the reference JPEG implementation for different JPEG qualities.

Our diff. JPEG approach consistently leads to a better forward performance

[4] X. Xie et al., "Bandwidth-Aware Adaptive Codec for DNN Inference Offloading in IoT," in ECCV, 2022, pp. 88–104

[5] R. Shin et al., "JPEG-resistant Adversarial Images," in NIPS Workshop, vol. 1, 2017, p. 8

[6] Y. Xing et al., "Invertible Image Signal Processing," in CVPR, 2021, pp. 6287–6296

Differentiable JPEG Results I

Results (Forward Function)

Figure: Performance of approximating the reference JPEG implementation for different JPEG qualities.

Our diff. JPEG approach consistently leads to a better forward performance

[4] X. Xie et al., "Bandwidth-Aware Adaptive Codec for DNN Inference Offloading in IoT," in ECCV, 2022, pp. 88–104

[5] R. Shin et al., "JPEG-resistant Adversarial Images," in NIPS Workshop, vol. 1, 2017, p. 8

[6] Y. Xing et al., "Invertible Image Signal Processing," in CVPR, 2021, pp. 6287–6296

Differentiable JPEG Results II

Results (Forward Function)

Figure: Qualitative results differentiable JPEG coding.

Differentiable STE JPEG Results

Results (Forward Function)

Figure: Performance of approximating the reference JPEG implementation for different JPEG qualities.

STE improves forward function performance compared to the surrogate approach

Differentiable STE JPEG Results

Results (Forward Function)

Figure: Performance of approximating the reference JPEG implementation for different JPEG qualities.

STE improves forward function performance compared to the surrogate approach

Differentiable JPEG Results

Results (Backward Function)

Utilize adversarial attacks to demonstrate backward function performance

Table: Backward function results (IFGSM [7] w/ $\epsilon = 3$)

Our diff. JPEG approaches lead to superior adversarial samples

Differentiable JPEG Results

Results (Backward Function)

Utilize adversarial attacks to demonstrate backward function performance

Attack time \rightarrow JPEG _{diff} \rightarrow ResNet-50 \rightarrow \hat{y} $\stackrel{\underline{d\mathcal{L}(\hat{y},y)}}{\underline{dI}}$				I _{adv} —►	Te JPEG _{std}	Test time JPEG _{std} → ResNet-50		

Table: Backward function results (IFGSM [7] w/ $\epsilon = 3$)

Our diff. JPEG approaches lead to superior adversarial samples

Differentiable JPEG Results

Results (Backward Function)

Utilize adversarial attacks to demonstrate backward function performance

I → JPEG ◆·····	Attack time $diff \rightarrow Re$ $\frac{d\mathcal{L}(\hat{y}, y)}{dI}$	Ĵ → ŷ	I _{adv} →	$I_{adv} \longrightarrow \overline{JPEG_{std}} \longrightarrow \overline{ResNet-50}$				
Approach	a range \rightarrow	1-99	Top-1 acc \ 1-10	11-99	1-99	Top-5 acc ↓ 1-10	11-99	
Xing et al. [6] Xie et al. [4] Shin et al. [5] Our diff. JPEG Our diff. STE	JPEG	43.44 25.30 15.11 14.39 <i>15.00</i>	24.42 14.72 8.98 7.97 8.35	45.82 26.63 15.88 15.19 <i>15.83</i>	72.52 46.55 27.21 25.79 27.07	45.55 31.47 19.99 17.53 <i>18.73</i>	75.90 48.43 28.11 26.83 28.12	

Table: Backward function results (IFGSM [7] w/ $\epsilon = 3$)

Our diff. JPEG approaches lead to superior adversarial samples

Ablation Study Results

Which rounding/flooring approximation to use?

Table: Rounding/flooring approximation ablation (backward function; IFGSM [7] w/ $\epsilon = 3$)

Polynomial approximation leads to the best forward and backward performance

Ablation Study Results

Which rounding/flooring approximation to use?

			Top-1 acc↓	Top-5 acc \downarrow			
Function	q range $ ightarrow$	1-99	1-10	11-99	1-99	1-10	11-99
Fourier Linear Polynomial Sigmoid Tanh		39.53 25.69 14.39 20.28 22.52	20.16 22.41 7.97 6.34 15.20	41.95 26.10 15.19 22.02 23.43	68.98 46.52 25.79 36.79 41.80	40.81 42.84 <i>17.53</i> 14.44 32.79	72.50 46.98 26.83 39.59 42.92

Table: Rounding/flooring approximation ablation (backward function; IFGSM [7] w/ $\epsilon = 3$)

Polynomial approximation leads to the best forward and backward performance

Ablation Study Results

Which rounding/flooring approximation to use?

			Top-1 acc \downarrow			Тор-5 асс↓	
Function	q range $ ightarrow$	1-99	1-10	11-99	1-99	1-10	11-99
Fourier Linear		39.53 25.69	20.16 22.41	41.95 26.10	68.98 46.52	40.81 42.84	72.50 46.98
Polynomial		14.39	7.97	15.19	25.79	17.53	26.83
Sigmoid Tanh		20.28 22.52	6.34 15.20	22.02 23.43	36.79 41.80	14.44 32.79	39.59 42.92

Table: Rounding/flooring approximation ablation (backward function; IFGSM [7] w/ $\epsilon = 3$)

Polynomial approximation leads to the best forward and backward performance

We showcased that existing diff. JPEG approaches break down for strong compression

- We presented a novel diff. JPEG coding approach outperforming existing approaches
- Our diff. JPEG approach can facilitate:
 - Differentiable data augmentation
 - Optimizing JPEG for deep networks

- Adversarial attacks
- Data hiding

- We showcased that existing diff. JPEG approaches break down for strong compression
- We presented a novel diff. JPEG coding approach outperforming existing approaches
- Our diff. JPEG approach can facilitate:
 - Differentiable data augmentation
 - Optimizing JPEG for deep networks

- Adversarial attacks
 Data biding
- Project page
 Paper
 Code
 Cod

ttps://christophreich1996.github.io/differentiable_jpeg/

- We showcased that existing diff. JPEG approaches break down for strong compression
- We presented a novel diff. JPEG coding approach outperforming existing approaches
- Our diff. JPEG approach can facilitate:
 - Differentiable data augmentation
 - Optimizing JPEG for deep networks

- Adversarial attacks
- Data hiding

- We showcased that existing diff. JPEG approaches break down for strong compression
- We presented a novel diff. JPEG coding approach outperforming existing approaches
- Our diff. JPEG approach can facilitate:
 - Differentiable data augmentation
 - Optimizing JPEG for deep networks

- Adversarial attacks
- Data hiding

References I

- [1] G. K. Wallace, "The JPEG still picture compression standard," *IEEE Trans. Consum. Electron.*, vol. 38, no. 1, pp. xviii–xxxiv, 1992
- G. Hudson et al., "JPEG-1 standard 25 years: past, present, and future reasons for a success," J. Electron. Imaging, vol. 27, no. 4, pp. 040 901–1–040901–19, 2018
- [3] Y. Bengio *et al.*, "Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation," *arXiv:1308.3432*, 2013
- [4] X. Xie *et al.*, "Bandwidth-Aware Adaptive Codec for DNN Inference Offloading in IoT," in *ECCV*, 2022, pp. 88–104
- [5] R. Shin et al., "JPEG-resistant Adversarial Images," in NIPS Workshop, vol. 1, 2017, p. 8
- [6] Y. Xing et al., "Invertible Image Signal Processing," in CVPR, 2021, pp. 6287–6296
- [7] A. Kurakin et al., "Adversarial Machine Learning at Scale," in ICLR, 2017