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Motivation

JPEG coding is ubiquitous!

Millions of devices are using JPEG coding
JPEG coding is the core of many real-world image processing pipelines

[1] G. K. Wallace, “The JPEG still picture compression standard,” IEEE Trans. Consum. Electron., vol. 38, no. 1, pp. xviii–xxxiv, 1992
[2] G. Hudson et al., “JPEG-1 standard 25 years: past, present, and future reasons for a success,” J. Electron. Imaging, vol. 27, no. 4, pp. 040901–1–040901–19, 2018
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JPEG Coding Pipeline
Introduction
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Figure: JPEG encoding-decoding pipeline.

E Standard JPEG coding is non-differentiable
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Non-Differentiability of JPEG
Introduction
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Figure: Rounding function.

Gradient of rounding function is zero
almost everywhere (or undefined)
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Figure: Clipping function.

Gradient of clipping function is zero for
clipped values

E Inhibits the application of gradient-based learning (e.g., neural network training)
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Our Differentiable JPEG Approach
Method

Existing Differentiable JPEG Approaches

Only model the DCT feature quantization step (rounding func.) in a differentiable setting.

We model all crucial discretization and bounds of standard JPEG [1] in a differentiable setting
DCT feature quantization
Quantization table scale flooring
Quantization table flooring
Quantization table clipping
Output image clipping

[1] G. K. Wallace, “The JPEG still picture compression standard,” IEEE Trans. Consum. Electron., vol. 38, no. 1, pp. xviii–xxxiv, 1992
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Our Differentiable JPEG Approach
Method
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Figure: Diff. rounding function approximation.

bxe = bxe+ (x − bxe)3
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Figure: Diff. clipping function approximation.

clip(x, b−, b+) =


x if x ∈ [b−, b+]
b− + γ (x − b−) if x < b−
b+ + γ (x − b+) if x > b+
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Our Differentiable STE JPEG Approach
Method

Standard Straight-Through Estimation [3] assumes a constant gradient

bxeSTE =

{
bxe forward pass
1 backward pass

Our STE approach uses the gradient of the differentiable surrogate function

bxeSTE =

{
bxe forward pass
d
dx bxe+ (x − bxe)3 backward pass

[3] Y. Bengio et al., “Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation,” arXiv:1308.3432, 2013
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Differentiable JPEG Results I
Results (Forward Function)
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Figure: Performance of approximating the reference JPEG implementation for different JPEG qualities.

Our diff. JPEG approach consistently leads to a better forward performance
[4] X. Xie et al., “Bandwidth-Aware Adaptive Codec for DNN Inference Offloading in IoT,” in ECCV, 2022, pp. 88–104
[5] R. Shin et al., “JPEG-resistant Adversarial Images,” in NIPS Workshop, vol. 1, 2017, p. 8
[6] Y. Xing et al., “Invertible Image Signal Processing,” in CVPR, 2021, pp. 6287–6296

January 5, 2024 | TU Darmstadt | NEC Labs America | Christoph Reich | 8



Differentiable JPEG Results I
Results (Forward Function)

1 3 5 7 9 11
0.4

0.6

0.8

1.0

JPEG quality

SS
IM

↑

1 3 5 7 9 11

20

30

40

JPEG quality

PS
N
R
(d

B)
↑

Ours (w/o STE) Xie et al. [4]
Shin et al. [5] Xing et al. [6]

Figure: Performance of approximating the reference JPEG implementation for different JPEG qualities.

Our diff. JPEG approach consistently leads to a better forward performance
[4] X. Xie et al., “Bandwidth-Aware Adaptive Codec for DNN Inference Offloading in IoT,” in ECCV, 2022, pp. 88–104
[5] R. Shin et al., “JPEG-resistant Adversarial Images,” in NIPS Workshop, vol. 1, 2017, p. 8
[6] Y. Xing et al., “Invertible Image Signal Processing,” in CVPR, 2021, pp. 6287–6296

January 5, 2024 | TU Darmstadt | NEC Labs America | Christoph Reich | 8



Differentiable JPEG Results I
Results (Forward Function)

1 3 5 7 9 11
0.4

0.6

0.8

1.0

JPEG quality

SS
IM

↑

1 3 5 7 9 11

20

30

40

JPEG quality

PS
N
R
(d

B)
↑

Ours (w/o STE) Xie et al. [4]
Shin et al. [5] Xing et al. [6]

Figure: Performance of approximating the reference JPEG implementation for different JPEG qualities.

Our diff. JPEG approach consistently leads to a better forward performance
[4] X. Xie et al., “Bandwidth-Aware Adaptive Codec for DNN Inference Offloading in IoT,” in ECCV, 2022, pp. 88–104
[5] R. Shin et al., “JPEG-resistant Adversarial Images,” in NIPS Workshop, vol. 1, 2017, p. 8
[6] Y. Xing et al., “Invertible Image Signal Processing,” in CVPR, 2021, pp. 6287–6296

January 5, 2024 | TU Darmstadt | NEC Labs America | Christoph Reich | 8



Differentiable JPEG Results II
Results (Forward Function)
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Figure: Qualitative results differentiable JPEG coding.
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Differentiable STE JPEG Results
Results (Forward Function)
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Figure: Performance of approximating the reference JPEG implementation for different JPEG qualities.

STE improves forward function performance compared to the surrogate approach
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Differentiable JPEG Results
Results (Backward Function)

Utilize adversarial attacks to demonstrate backward function performance
Attack time

I JPEGdiff ResNet-50 ŷ

dL(ŷ,y)
dI

Test time
Iadv JPEGstd ResNet-50 ŷ

Top-1 acc ↓ Top-5 acc ↓

Approach q range → 1-99 1-10 11-99 1-99 1-10 11-99

Xing et al. [6] 43.44 24.42 45.82 72.52 45.55 75.90
Xie et al. [4] 25.30 14.72 26.63 46.55 31.47 48.43
Shin et al. [5] 15.11 8.98 15.88 27.21 19.99 28.11
Our diff. JPEG 14.39 7.97 15.19 25.79 17.53 26.83
Our diff. STE JPEG 15.00 8.35 15.83 27.07 18.73 28.12

Table: Backward function results (IFGSM [7] w/ ε = 3)

Our diff. JPEG approaches lead to superior adversarial samples
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Ablation Study
Results

Which rounding/flooring approximation to use?

Top-1 acc ↓ Top-5 acc ↓

Function q range → 1-99 1-10 11-99 1-99 1-10 11-99

Fourier 39.53 20.16 41.95 68.98 40.81 72.50
Linear 25.69 22.41 26.10 46.52 42.84 46.98
Polynomial 14.39 7.97 15.19 25.79 17.53 26.83
Sigmoid 20.28 6.34 22.02 36.79 14.44 39.59
Tanh 22.52 15.20 23.43 41.80 32.79 42.92

Table: Rounding/flooring approximation ablation (backward function; IFGSM [7] w/ ε = 3)

Polynomial approximation leads to the best forward and backward performance
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Conclusion

We showcased that existing diff. JPEG approaches break down for strong compression
We presented a novel diff. JPEG coding approach outperforming existing approaches
Our diff. JPEG approach can facilitate:

Differentiable data augmentation
Optimizing JPEG for deep networks

Adversarial attacks
Data hiding

Project page m Paper � Code �

https://christophreich1996.github.io/differentiable_jpeg/
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