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Introduction - Linear Layer
Attention Is All You Need

Figure: Feed forward neural network composed of three linear layers.

f:R?2 5 RY Fx) =g(g(gxTW,) Wa)Ws), x € R2, Wy € R?*5, Wy, € RP*5, W, e R (1)
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Figure: Feed forward neural network composed of three linear layers.

f:R?2 5 RY Fx) =g(g(gxTW,) Wa)Ws), x € R2, Wy € R?*5, Wy, € RP*5, W, e R (1)

Observation
f applies the same weights to all inputs!
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Attention is just a dynamic linear layer.
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Attention is just a dynamic linear layer.

Weights are generated dynamically based on the given input.
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XTW(x) (2)
Advantages of Attention
® Attention can vastly adapt to different inputs
= |n practice more expressive than linear layers
= Attention can adapt to different shapes of x
m Attention is a global operation
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Attention Is All You Need [Vaswani et al., 2017]
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Scaled Dot-Product Attention (standard form of Attention) is defined as: [Bahdanau et al., 2015]

.
Attention(Q,K,V) = softmax(%) V, Q. K.V cR"™, (3)

Assume fornow Q =K = V.
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.
Attention(Q,K,V) = softmax(o\;) V, Q. K.V cR"™, (3)

Assume fornow Q =K = V.

Q K v
Figure: Compute graph of the Scaled Dot-Product Attention operation.
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Scaled Dot-Product Attention with linear mappings:

T
Attention(Q, K, V) = softmax(mw\/(?ﬂ'()> VWy, Q,K,V € R"% Wq, Wi, Wy € R*%  (4)

Wq, Wk, Wy are just learnable linear mappings.
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Self- vs. Cross-Attention
Attention Is All You Need [Vaswani et al., 2017]
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In Self-Attention X = Q = K = V (Attention(X, X, X))
= Attention is performed between the input itself
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Attention Is All You Need [Vaswani et al., 2017]
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In Self-Attention X = Q = K = V (Attention(X, X, X))
= Attention is performed between the input itself

In Cross-Attention X; = Q, X, = K = V (Attention(X, X2, X2))
= Attention is performed between two different inputs
= Number of tokens in X; € R %% and X, € R"*¢ can differ
m Can be interpreted intuitively as a conditioning
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Limitation of Attention, just a single Attention matrix constructed.

T
Attention(Q,K, V) = softmax<w\/(ng)> VWy, Q. K,V € R™% Wq Wi, Wy € R, (5)

cRnxn
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Limitation of Attention, just a single Attention matrix constructed.

(QWo) (KWy)"
vn

cRnxn

Attention(Q,K, V) = softmax( ) VWy, Q. K,V € R™% Wq Wi, Wy € R, (5)

Let's use multiple Attention matrices, each learning different features.
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Limitation of Attention, just a single Attention matrix constructed.

(QWo) (KWy)"

Attention(Q,K, V) = softmax< ) VWy, Q. K,V € R™% Wq Wi, Wy € R, (5)

vn
ERHXH
Let's use multiple Attention matrices, each learning different features.
MultiHeadAttention(Q, K, V) = ConCat(heady, ..., head,) Wy, Wo € R%*% (6)
where head; = Attention(Q, K, V) @)

Attention utilizes Wq, Wy, Wy € RC*¢/h,
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Attention Is All You Need [Vaswani et al., 2017] Bx};’/&iigél

The Transformer block utilizes multiple advances in deep learning.
= Multi-Head Attention [Vaswani et al., 2017]
= Layer Normalization [Ba et al., 2016]
= Residual skip connections [He et al., 2016]
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The Transformer block utilizes multiple advances in deep learning.
® Multi-Head Attention [Vaswani et al., 2017]
= Layer Normalization [Ba et al., 2016]
= Residual skip connections [He et al., 2016]

/

Transformer Encoder

\ N x Y,

Figure: Transformer encoder composed of N Transformer blocks. Figure adapted from [Rohr et al., 2022].

Input
Multi-Head
Add & LN |«

Feed

Forward

Add & LN |+

Attention
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Limitations of Attention TECHNISCHE
Attention Is All You Need [Vaswani et al., 2017] VAP

The Attention operation and Transformers entails multiple issues:

= Computationally expensive

o Computational complexity of Self-Attention O (n* d)
o Memory complexity Self-Attention O(n2 + nd) (in practice or during training with Backprop

[Rabe and Staats, 2021])
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Limitations of Attention TECHNISCHE
Attention Is All You Need [Vaswani et al., 2017] VAP

The Attention operation and Transformers entails multiple issues:

= Computationally expensive

o Computational complexity of Self-Attention O (n* d)
o Memory complexity Self-Attention (D(n2 + nd) (in practice or during training with Backprop

[Rabe and Staats, 2021])
= Training requires generally a lot of data
o Attention operations is very general and does not encode inductive biases

o Architectures with more inductive biases (e.g. CNNs) typically perform better on limited data
o Large scale pre-training is needed to achieve strong results on small datasets
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Overcoming the limitations of Attention and Transformers is an active body of research.
® Linearizing the Attention operation
o Linformer [Wang et al., 2020]
o Performer [Choromanski et al., 2021]
= Reformulating the Attention operation
o Efficient Attention [Shen et al., 2021]
o XCiT [Ali et al., 2021]
m Local & Sparse Attention
o Reformer [Kitaev et al., 2020]
o Axial-Attention [Ho et al., 2019]
o Shifted Window Attention [Liu et al., 2021, Liu et al., 2022]
m Replacing the Attention operation in Transformers
o FNet [Lee-Thorp et al., 2021]
o MLP-Mixer [Tolstikhin et al., 2021]
o Token Pooling [Marin et al., 2023]
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Generative Pre-trained Transformer (GPT) is an autoregressive language model.
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Generative Pre-trained Transformer (GPT) is an autoregressive language model.

Language models (LM) aim to model the conditional probability of the next word given all previous
ones [Bengio et al., 2000].

In particular, large language models (LLM), such as GPT, model the joint probability distribution
over words/symbols as the product of conditional probabilities.

p(x) = [ p(salsr.- . sn-1) (8)
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Generative Pre-trained Transformer (GPT) is an autoregressive language model.

Language models (LM) aim to model the conditional probability of the next word given all previous
ones [Bengio et al., 2000].

In particular, large language models (LLM), such as GPT, model the joint probability distribution
over words/symbols as the product of conditional probabilities.

n

Hp(s,,|sl, oy Sn_1) (8)

i=1

p=y
=
|

GPT takes in past words and predicts a distribution over all words (in dictionary) describing how
probable each word is to come next. Sample from this distribution and repeat the prediction.
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4 Transformer Encoder (GPT) )
o] Pos. Enc. -
'% T ||z z =
® r 3 S| o E - %
al_ > T EH® 3 zH® > 2 >
LIE.I L 22|z 5o o
” 33|23 R %
> )
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N N x J
Figure: GPT architecture composed of stacked transformer blocks [Radford et al., 2019, Brown et al., 2020].

GPT-3 stacks 96 transformer blocks, resulting in 175B parameters [Brown et al., 2020].
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Figure: GPT architecture composed of stacked transformer blocks [Radford et al., 2019, Brown et al., 2020].

GPT-3 stacks 96 transformer blocks, resulting in 175B parameters [Brown et al., 2020].

Unsupervised language pre-training utilizes, the Common Crawl dataset (filtered). Dataset size
before filtering is 45 TB and after filtering 570 GB. [Brown et al., 2020]
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Scaling up LLMs (model and/or dataset) can drastically improve their performance.
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Scaling up LLMs (model and/or dataset) can drastically improve their performance.

The performance of LLM improves as a power law with respect to the dataset size, model size, and
the amount of compute used for training.
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Scaling up LLMs (model and/or dataset) can drastically improve their performance.

The performance of LLM improves as a power law with respect to the dataset size, model size, and
the amount of compute used for training.

Validation Loss
Parameters

~ L=2.57-C700%

1.5
10° 10t 107 10 10 10
Compute (PetaFLOP/s-days)

Figure: Scaling the model size and compute of GPT-3. Figure from [Brown et al., 2020].
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How to utilize the Transformer architecture for vision tasks?
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How to utilize the Transformer architecture for vision tasks?

Interpreting every pixel as a token is infeasible due to quadratic complexity of the Attention
operation.
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How to utilize the Transformer architecture for vision tasks?

Interpreting every pixel as a token is infeasible due to quadratic complexity of the Attention
operation.

Vision Transformer (ViT) idea

Utilize image patches as tokens and not pixels [Dosovitskiy et al., 2021].
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The Vision Transformer utilizes the standard Transformer encoder architecture.

Vision Transformer (ViT)

MLP
Head

Transformer Encoder

Transformer Encoder ’

P pon @5 @15 i

Multi-Head
Attention

* Extra learnable - —
[class] embedding Linear Projection of Flattened Patches ]

SR LI T T 11T
g@g—»ilﬁmmkﬂﬁﬂ

Embedded
Patches

Figure: Vision Transformer architecture. Image taken from [Dosovitskiy et al., 2021].
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Overview TECHNISCHE
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No peer-reviewed article on ChatGPT has yet been published! Currently, only a non-peer-reviewed
blog post and a demo have been released by OpenAl [OpenAl, 2022].
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No peer-reviewed article on ChatGPT has yet been published! Currently, only a non-peer-reviewed
blog post and a demo have been released by OpenAl [OpenAl, 2022].

ChatGPT is a chatbot based on the GPT model family.

= ChatGPTs architecture is based on GPT-3.5, a Transformer-based model.

® Presumable ChatGPT entails 175B parameters. Smaller variants are probably also available
(6B and 1.3B).

® ChatGPT is using “same” methods as InstructionGPT [Ouyang et al., 2022] (with slight
differences).
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ChatGPT (GPT-3.5) is pre-trained on text (similar to GPT-3) and code (similar to GitHub Copilot).

To align ChatGPT on instructions (chat-setting) Reinforcement Learning from Human Feedback
(RLHF) is employed.
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ChatGPT (GPT-3.5) is pre-trained on text (similar to GPT-3) and code (similar to GitHub Copilot).

To align ChatGPT on instructions (chat-setting) Reinforcement Learning from Human Feedback
(RLHF) is employed.

Step1
Collect demonstration data
and train a supervised policy.
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]

sampledfiomour .

prompt dataset. et

1
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demonstrates the

desired output
behavior Chln
v
s
This datais used to SR,
fine-tune GPT-35 %
with supervised ¢
learnin
< BERR

January 18,2023 | NEC Laboratories America, Inc. | Self-Organizing Systems Lab | Christoph Reich | 18



Training
ChatGPT [OpenAl, 2022]

TECHNISCHE
UNIVERSITAT
DARMSTADT

ChatGPT (GPT-3.5) is pre-trained on text (similar to GPT-3) and code (similar to GitHub Copilot).

To align ChatGPT on instructions (chat-setting) Reinforcement Learning from Human Feedback
(RLHF) is employed.
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ChatGPT (GPT-3.5) is pre-trained on text (similar to GPT-3) and code (similar to GitHub Copilot).

To align ChatGPT on instructions (chat-setting) Reinforcement Learning from Human Feedback
(RLHF) is employed.

Stept step2 Step3
Collect demonstration data Collect comparison data and Optimize a policy against the

i i t ina reward model using the PPO
reinforcement learning algorithm.

Apromptis o Apromptand Anew promptis e
sampledfomour o S several model sampled from R
prompt dataset. sty outputs are the dataset. oot
sampled.
I f
‘The PPO modelis. A
Alabeler ® ntaizediomte SR -
demonstratesthe supervised policy. Do
desired output a N
Vo gttt
oonver o ¥ i
Alabeler ranks the The policy generates  guce ponstime.
\ outputs from best anoutput
s toworst. 0:0-0-0 t
is datal A, e
i data s e Rl The reward model ,
e G [} calculates areward @
e ms"L:;ervl 4 - for the output. bt
EEE] This datais used p
totrain our § The reward s used '

reward model. to update the
0:6:0-0 K

policy using PPO. «

Figure: RLHF-based fine tuning procedure of ChatGPT. Figure taken from [OpenAl, 2022].
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Questions?

Slides are available at:

[:1::_.11.[;]

https://christophreich1996.github.io/pdfs/lab_talk_16_1_2023.pdf

©00
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